Semantic Program Analysis for Scientific Model Augmentation

Christine Herlihy, Kun Cao, Sreenath Reparti, Erica Briscoe, and James Fairbanks

Georgia Tech Research Institute, Atlanta, GA

Abstract

SemanticModels. j1 is a system for extracting semantic information from scientific code and
reconciling it with conceptual descriptions to build a knowledge graph. This knowledge graph
represents the connections between elements of code (variables, values, functions, and expres-
sions) and elements of scientific understanding (concepts, terms, relations), and can be reasoned
over to facilitate several metamodeling tasks, including model augmentation, synthesis, and val-
idation. We present a category theory-based framework for defining metamodeling tasks and ex-
tracting semantic information from model implementations, and show how SemanticModels. j1
can be used to augment scientific workflows in the epidemiological domain.

1 Introduction

SemanticModels. jlfacilitates several metamodeling tasks by detecting and exploiting the implicit
relationships between the semantically rich, natural language-based representations of scientific
knowledge found in academic papers, and the relatively semantically sparse, but modular and
precise representations of such knowledge found in code. These relationships comprise a knowledge
graph. We demonstrate how this knowledge graph can be reasoned over to support metamodeling
tasks that may be exploratory, iterative and/or inter-disciplinary in nature. Our software can
augment scientific workflows in support of a wide range of objectives, from state space exploration
and hypothesis generation to evidence-based policy-making.

1.1 Motivation

Progress in science comes from adapting and extending models from prior work to address new
problems, but current scientific research workflows make this difficult. This is due in part to the
fact that scientific papers are not sufficiently high fidelity representations of conceptual, semantic,
and mathematical models required to provide complete transfer of information between and among
domains and researchers.

In addition, the nature of scientific inquiry often lends itself to highly tailored, procedural scripts
that are primarily intended to produce and record results, while objectives such as modularity
take a backseat. Scientific code contains a large amount of sophisticated domain knowledge that
is known to the author of a code, but not expressed within the programming language. Such
semantic modeling information includes rules and constraints imposed by the physical phenomena
being modeled. For example, 1) stochastic systems are modeled with probability values, which are
constrained to be between 0 and 1; 2) unitful measurements must obey the laws of dimensional
analysis, which invalidate quantities such as 3m + 4m/s; and 3) signal processing algorithms must
treat time domain and frequency domain signals differently even though they are both represented
by arrays of floating point numbers.

Herlihy, Cao, Reparti, Briscoe, Fairbanks Modeling the World’s Systems, 2019

Our work is grounded in the belief that a framework that augments scientific workflows by alter-
nately inferring, injecting, and rewarding the inclusion of semantic information in code via the type
system can help to mitigate these challenges in a way that is computationally efficient, verifiable,
reproducible, and open to improvement through iterative feedback and expansion with respect to
domains.

1.2 Significance

As computational models of complex world systems grow increasingly sophisticated, program anal-
ysis tools must understand and manipulate these models. We introduce a formalism to study the
augmentation of scientific modeling code. These ideas are implemented in a software package for
analyzing and manipulating models written in the Julia programming language [1]. The Julia lan-
guage is ideal for this problem because it includes a capable type system programmers can use with
multiple dispatch and is widely used in scientific computing. By encoding information about model
semantics into the type system, the Julia compiler can understand, enforce, and manipulate those
model semantics. These manipulations are studied in the context of epidemiological models, but
are broadly applicable to both agent-based and differential equations-driven simulations.

1.3 Related Work

The semantic metamodeling system proposed here is informed by foundational concepts from sev-
eral disciplines, including software engineering, programming language theory, natural language
processing, and statistical meta-analysis. Software engineering emphasizes modular design, au-
tomation of repeated tasks, and incremental modifications [2]. Within this context, refactoring
code refers to a process in which developers modify portions of an existing code to maintain or
improve correctness while increasing maintainability. The correctness of a piece of software can
be formally defined, and it is possible to design an automatic verification system; this is a well-
established field of study within theoretical computer science [4].

Our system represents extends this notion of automatically verifiable program correctness to the
semantic level by identifying, connecting, and verifying the unwritten invariants of scientific mod-
eling code. In contrast to the explicit type and syntax rules employed by traditional verification
approaches, the rules we seek to identify, extract, and use, are often informally specified or encoded
in non-operational code and text, such as documentation, comments, and/or variable naming con-
ventions. Our system can also be viewed as connecting existing work related to the use of knowledge
graphs for the storage, retrieval, and emergent pattern mining of semantic information, and the
development of ontologies, data flow graphs, and workflow management tools to integrate and
automate common machine learning tasks and pipelines [8, 3, 7].

2 Methodological Approach

Our metamodeling approach requires a corpus of scientific code (containing model implementa-
tions) and domain-specific knowledge (currently in the form of scientific text) as input. Program
analysis methods (both static and dynamic) and natural language processing techniques are used to
build a knowledge graph representing the relationships between elements in the code (variables, val-
ues, functions, and expressions) and semantic elements of scientific understanding (i.e., concepts,
terms, relations). This knowledge graph may then be used to reason over in support of model
augmentation, synthesis, and validation. This paper focuses on model augmentation.

We begin by presenting a formal framework that can be used to represent and reason about these

Herlihy, Cao, Reparti, Briscoe, Fairbanks Modeling the World’s Systems, 2019

different metamodeling use cases. We then provide examples from epidemiology to illustrate how
this framework and associated semantic knowledge graph construction process, can be applied to
augment real-world scientific workflows.

Our motivation for focusing on epidemiology is twofold: the associated literature demonstrates the
use of a shared model structure with many variations. Furthermore, math represented therein spans
both discrete and continuous systems of equations, solved by a diverse set of algorithms.

Scientific programmers represent models at 3 levels: 1) as a set of domain concepts understood
by the developer, but not explicitly stated or encoded; 2) code implementations in a high-level
language; and 3) an executable program compiled or interpreted on a specific computer architec-
ture. We introduce the semantic level, derived from pertinent information from the code (such
as that imparted through the type system) as well as from conceptual relations in the knowledge
graph.

2.1 Theoretical Foundations

We formally define the components of our system using the language of category theory [11]:

A model M = (D, R, f) is a tuple containing a set D, called the domain, and a set R, called the
co-domain, with a function f : D — R. If D is the cross product of sets Dy x Dy --- Dy, then
f = f(z1...2k), where = are the independent variables of M. If R = Ry X Ry --- Ry, then R; are
the dependent variables of M.

The parsimonious formalization of what constitutes a valid transformation, or set of rules for
modifying or combining models, requires us to assess not only mathematical and programmatic
behavior of the system, but also the extent to which the resulting set of models are internally
consistent and reflective of domain-specific scientific facts. We address this challenge through our
approach to knowledge graph construction, as well as through ontology logs and the Julia type
system.

A Category C is a set of objects and morphisms, which are structure preserving functions between
the objects. Common examples of categories include the category of all groups, the set of all finite
graphs, and the set of all finite preorders [11]. Ontology logs (ologs) are a diagrammatic approach
to formalizing scientific knowledge used to precisely specify a conceptual model of a phenomenon
or experiment [10]. An olog is composed of types (boxes) and aspects (edges). Figure 1 represents
the susceptible-infected-recovered (SIR) model as an olog [9].

an SIR model

M ﬁs \:;NA

an initial state a paramterization a time domain a solution
/(/has \(:s has &ms l&lam at “~ends at \‘s
a susceptible an infected a recovered an infection rate a recovery rate a starting time an ending time a function
population population population h : yH PETS ‘ 5 ‘
a natural number a number a positive number

Figure 1: Ologs can be used to represent the structure of scientific models without the mathematics.

Herlihy, Cao, Reparti, Briscoe, Fairbanks Modeling the World’s Systems, 2019

All programs in a strongly typed language have a set of types and functions that map values
between those types. For example, the Julia program: a = 5.0 b = 1; ¢ = 2%¥a; d = b + ¢
has the types Int, Float and functions *, +, which are both binary functions. These types and
functions can be represented as a category, where the objects are the types and the morphisms are
the functions. We refer to the input type of a function as the domain and the output type as the
codomain of the function. Multi-argument functions are represented with tuple types representing
their arguments. For example +(a::Int,b::Int)::Int is a function + : Int x Int — Int. These
type categories are well studied in the field of Functional Programming. We apply these categories
to the study of mathematical models.

Functional programming and category theory are intertwined and base the analysis of programs
on the types and functions used in the program [12]. SemanticModels.jl implements a dynamic
analysis tool using Cassette to instrument code to extract the run time type information for every
function. That is to build a graph where the nodes are types and the edges are functions, where a
function f connects types T, U if T is the type of f’s arguments and U is the type of f’s output values
as expressed in julia syntax, f(x::T)::U'. The category theoretic approach enables reasoning over
the semantics of programs.

The most salient consequence of programming language theory is that the more information that a
programmer can encode in the type system, the more helpful the programming language can be for
improving performance, quality, and correctness. Haskell programmers often use the type system
to encode program semantics to improve software quality [5]. SemanticModels.jl uses the type
system to encode model semantics to improve understanding, adaptability, and extensibility of the
modeling code.

Model developers use conventions to encode semantic constraints into their code — for example, pref-
acing all variables that refer to time with a t_, such as t_start, t_end. This semantic constraint
that all variables named t_ are temporal variables is not encoded in the type system. Another
example is that vectors of different lengths are incompatible. In a compartment model, the number
of initial conditions must match the number of compartments. For example in an SIR model, there
are 3 initial conditions, [S, I, R], and there are 2 parameters [3,v]. These vectors are incompatible.
Computational systems employed by scientists will use a runtime check on dimensions to detect
malformed linear algebra 2. Scientists rely on this limited form of semantic integrity checking pro-
vided by the language, SemanticModels. j1 is intended to rigorously apply such integrity checking
across the modeling ecosystem.

Our goal is to extract and encode the maximum amount of information from scientific codes into the
type system, where algorithms can analyze the integrity of programs in the language of categories.
For example, if there are two types S,T and two functions f,g : S — T such that Codom(f) =
Codom(g) but Range(f)N Range(g) = 0, then we say that the type system is ambiguous. In order
to more fully encode program semantics into the type system, the programmer (or an automated
system) should introduce new types into the program to represent these disjoint subsets. Category
theory shows both why this is a problem for program analysis® and how to solve it with union

types.

!The a: :A operator in Julia asserts that the value of a is an instance of type A

2Julia, Scientific Python, and Matlab use run time checks, the C++ library Eigen supports both static and
dynamic dimension verification

31f model transformations are represented as functors in this category, this form of ambiguity prevents the type
system from enforcing semantic correctness of model transformations

https://eigen.tuxfamily.org/dox/group__TutorialMatrixArithmetic.html

Herlihy, Cao, Reparti, Briscoe, Fairbanks Modeling the World’s Systems, 2019

ODEProblem

y

ODEProblem A .
param / initial | solve! g domain
1 solve!

Solution

Params Inital | (v, 1) | Function _|Pai|‘{Flnz\t.Hm\l}

(a) Type Diagram of the SIR Model (b) Type Diagram of the SIR Model with Ambiguity
Resolved

Figure 2: Program Types can express model structure

Returning to the SIR model example, Figure 2 shows how the .param and .initial functions both
map Problem to Vector{Float} but with disjoint ranges. From our mathematical understanding
of the model, we know that parameters and initial conditions are incompatible types of vectors
because of the different lengths. Any program analysis of the model will be hampered by the
ambiguity introduced by using the same type to represent two different concepts. The functions
.first and .second which provide the beginning and end of the time domain of the system have
overlapping ranges and are comparable as times. This is an example of how programming language
ideas can improve the analysis of computational models.

2.2 Knowledge Graph Construction

To construct a epidemiological semantic knowledge graph, we use the Epicookbook?, a repository
implementing a variety of epidemiological compartmental models, along with explanatory natural
language text. Here, we developed a set of grammatical rules to parse the existing code com-
ments, from which we extract noun-predicate vertices to create an (edge) relationship of the type
“definition”. These extracted elements are inserted into the knowledge graph [6].

The Julia code associated with each epidemiological model, provides information through static
analysis. We use the same parser as the julia program. This parser takes text representations of
Julia code and returns an abstract syntax tree (AST). We then walk this AST looking for Julia
program expressions that create information, including function definitions, variable assignments,
and module imports. Function definitions are handled recursively to identify closures and local
variables.

Static program analysis provides direct access to the function call graph; however, inferred types
and runtime values require dynamic analysis. For this we use Cassette.j1°, which is a library
for context-dependent execution. SemanticModels. jl uses the overdub component of Cassette to
build a dynamic analysis tool. We identify and insert the vertices and edges extracted from code

into the knowledge graph in accordance with a fixed schema ©.

When two or more knowledge artifacts share provenance (e.g., the narrative text, programmer-
provided comments, and source code that, when taken in tandem, represent a single recipe in the
Epicookbook), we currently consider code text and markdown/comments text as strings, and use
rule-based learning to associate text with code objects; these lexical matches are then parsed in
an effort to extract edges of the type “representation” (abbreviated repr), which connect a (code)

‘http://epirecip.es/epicookbook/
*https://www.github.com/jrevels/Cassette. jl
Shttps://aske.gtri.gatech.edu/v0.1/graph/#Schema-1

http://epirecip.es/epicookbook/
https://www.github.com/jrevels/Cassette.jl
https://aske.gtri.gatech.edu/v0.1/graph/#Schema-1

Herlihy, Cao, Reparti, Briscoe, Fairbanks Modeling the World’s Systems, 2019

type source vertex to a (scientific) concept destination vertex.

3 Model Transformation Examples

Model augmentation refers to the set of metamodeling problems where a scientist gives the system a
model, M and a transformation 7', and uses the system to construct a new model, T'(M). Currently,
when a scientist modifies an existing model, they must start with an implementation of the current
model and directly modify the source code. This can be difficult in complex software implementa-
tions. We augment the scientist’s capabilities by: (a) allowing scientists to manipulate aspects of
the program’s execution (e.g. norms, distributional assumptions) that are not directly accessible,
including functions and models imported from libraries, and (b) automating the propagation of
changes throughout the software system.

To implement this capability, SemanticModels. j1, provides the Dubstep module, which uses Cas-
sette to modify programs by overdubbing their executions in a context’. Overdubbing allows you
to define a context that allows a program to control the execution behavior of programs that are
passed to it. Cassette is a novel approach to software development and integrates deeply with the
Julia compiler to provide high performance, aspect-oriented programming.

Users can define their own contexts, which can be used to: 1) modify the APIs associated with
user-defined or imported methods without making lexical changes to the source code; and 2) mix
compile-time and runtime computations, to allow the user to leverage the scope information in the
program trace to control execution.

Consider the motivating example in which a scientist has: 1) defined a Cassette context for solving
models (SolverCtx); 2) defined a function which contains a differential equation representing the
SIR compartmental model and computes the CC%‘ array for the SIR system, du/dt = sir_ode(du,
u, p, t);and 3) wishes to explore hypothetical scenarios that do not match baseline assumptions
or observed empirical conditions, such as, “What if the infection was stronger by a factor of a?”.
Mathematically, this perturbation is represented as: % = a(BSI —~I). This model augmentation
can be performed with minimal runtime overhead using the Cassette-based system. Users of the
SemanticModels. jl systems can add parameters such as « described above and then sweep over

these parameters to analyze trends or sensitivities within the new model.

A more complex model transformation is to take two models and transfer components from one
to the other. For example, an SEIR model without vital dynamics has 4 states and 3 parameters,
while a SIS model with vital dynamics has 2 states along with terms for net population growth of
the susceptible population. An epidemiologist would want to combine these models by transferring
the vital dynamics component of the SIS model to the SEIR model to create a new model with 4
parameters. SemanticModels.jl supports this capability®.

4 Conclusions

Semantic modeling aims to leverage scientific knowledge currently trapped in the body of scientific
code. While open source code is a prerequisite for reproducible research, it is not sufficient for
reuse and understanding of complex modeling code. We present an automated system for extract-
ing information from, reasoning about, and augmenting computational models. This framework

"Please excuse the audio puns. Cassette was developed to support automatic differentiation which involves com-
puting a program “tape”, and the language of tape manipulation has stuck.
Shttp://aske.gtri.gatech.edu/v0.2/example/

http://aske.gtri.gatech.edu/v0.2/example/

Herlihy, Cao, Reparti, Briscoe, Fairbanks Modeling the World’s Systems, 2019

does not require the scientists to program in a restricted framework, but instead directly consumes
standard Julia code. This framework enables extending models with new parameters and compo-
nents. This framework is based on knowledge representations with category theory and aims for
both theoretical soundness and practical usability.

5 Acknowledgments

The authors thank the Julia programming language team, and the developers of Cassette.j1l and
DifferentialEquations. j1l, without their software contributions, this work would be infeasible.
We also thank Clayton Morrison, Adarsh Pyarelal and Rebecca Sharp for their advice on this
manuscript. This material is based upon work supported by the Defense Advanced Research
Projects Agency (DARPA) under Agreement No. HR00111990008.

6 Resources

Our documentation is hosted at aske.gtri.gatech.edu/docs/latest. Source code github.com/
jpfairbanks/SemanticModels. j1 where you will find instructions for getting started. Data sets
can be found at aske.gtri.gatech.edu/data.

References

[1] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A fresh approach to numerical
computing. CoRR, abs/1411.1607, 2014.

[2] Barry W. Boehm. Seven basic principles of software engineering. Journal of Systems and Software,
3(1):3 — 24, 1983.

[3] H20.ai. H2o0.ai - open source leader in ai and ml. https://www.h20.ai/. (Accessed on 02/15/2019).

[4] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576-580,
October 1969.

[5] Cecilia Manzino and Alberto Pardo. A security types preserving compiler in Haskell. In Fernando Magno
Quintao Pereira, editor, Programming Languages, pages 16-30, Cham, 2014. Springer International
Publishing.

[6] Clayton Morrison. Automates: Automated model assembly from text, equations, and software. https:
//mldai.github.io/automates/, 2019. (Accessed on 02/15/2019).

[7] Evan Patterson, Ioana Baldini, Aleksandra Mojsilovic, and Kush R. Varshney. Teaching machines to
understand data science code by semantic enrichment of dataflow graphs. CoRR, abs/1807.05691, 2018.

[8] Evan Patterson, Robert McBurney, Hollie Schmidt, Ioana Baldini, Aleksandra Mojsilovi, and Kush R.
Varshney. Dataflow representation of data analyses: Toward a platform for collaborative data science.
IBM Journal of Research and Development, 61(6):9:1-9:13, 2017.

[9] Christopher Rackauckas. Epicookbook: A cookbook of epidemiological models. http://epirecip.es/
epicookbook/chapters/simple. (Accessed on 02/14/2019).

[10] David I. Spivak. Ologs: a categorical framework for knowledge representation. CoRR, abs/1102.1889,
2011.

[11] David I. Spivak. Category Theory for the Sciences. The MIT Press, 2014.

[12] Philip Wadler. The essence of functional programming. In Proceedings of the 19th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 92, pages 1-14, New York, NY,
USA, 1992. ACM.

aske.gtri.gatech.edu/docs/latest
github.com/jpfairbanks/SemanticModels.jl
github.com/jpfairbanks/SemanticModels.jl
aske.gtri.gatech.edu/data
https://www.h2o.ai/
https://ml4ai.github.io/automates/
https://ml4ai.github.io/automates/
http://epirecip.es/epicookbook/chapters/simple
http://epirecip.es/epicookbook/chapters/simple

	Introduction
	Motivation
	Significance
	Related Work

	Methodological Approach
	Theoretical Foundations
	Knowledge Graph Construction

	Model Transformation Examples
	Conclusions
	Acknowledgments
	Resources

