
Integrating Productivity-Oriented Programming Languages with
High-Performance Data Structures

Rohit Varkey Thankachan1, Eric R. Hein2, Brian P. Swenson3, and James P. Fairbanks3

Abstract— This paper shows that Julia provides suffi-
cient performance to bridge the performance gap between
productivity-oriented languages and low-level languages for
complex memory intensive computation tasks such as graph
traversal. We provide performance guidelines for using com-
plex low-level data structures in high productivity languages
and present the first parallel integration on the productivity-
oriented language side for graph analysis. Performance on the
Graph500 benchmark demonstrates that the Julia implementa-
tion is competitive with the native C/OpenMP implementation.

I. INTRODUCTION

The applicability of High Performance Computing tech-
nology is limited in applications outside of the HPC research
communities. A large set of existing libraries utilize complex
data structures in low-level languages for specialized tasks
to obtain high performance. Using high productivity lan-
guages bridges this gap between high performance comput-
ing and widespread adoption. While many researchers have
integrated scripting languages with HPC codes to achieve
floating point intensity [1], [2], [3], [4], there is less work
on using complex, non-contiguous, low-level data structures.
In contrast to codes which perform bulk operations on
simple data structures, tasks such as graph traversal and
network analysis require tightly coupled interactions between
application-specific subroutines and data structures [5].

NetworkX (Python) [6] and LightGraphs.jl (Julia) [7] are
graph analysis libraries purely implemented in productivity-
oriented languages. They use simple data structures created
natively in productivity-oriented languages - NetworkX uses
a dictionary of dictionaries, LightGraphs uses a vector of
vectors - to represent graphs. While libraries like these are
convenient for small graphs, they suffer from poor scala-
bility, especially when dealing with large dynamic graphs.
For example, when dynamically building a graph out of
streams of SCinet NetFlow traffic [8], researchers chose
STINGER [9], [10], a complex data structure implemented
in C. STINGER is a multicore parallel graph engine, using a
vector-of-blocked-lists along with carefully tuned primitives
for efficient multi-threaded graph construction and traversal.
HPC data structures must be implemented in low-level
programming languages in order to obtain good performance
for large streaming graphs.

This work was supported by the Georgia Tech Research Institute
1School of Computer Science, Georgia Institute of Technology Atlanta,

GA, USA rohitvarkey@gatech.edu
2School of Electrical and Computer Engineering, Georgia Institute of

Technology Atlanta, GA, USA ehein6@gatech.edu
3Georgia Tech Research Institute, Atlanta, GA, USA

brian.swenson,james.fairbanks@gtri.gatech.edu

In order to bridge the gap between rapid development
and high performance, software for graph analysis has
moved towards a hybrid model of using a high-productivity
language as an interface for users to a high-performance
language which implements the performance critical code
for algorithms and low-level complex data structures. The
Stanford Network Analysis Platform (SNAP)[11], [12] is a
high performance network analysis package that supports
productivity-oriented language integration through a Python
interface to a C++ core. The network analysis package
igraph[13] uses C for performance critical code, exposing
interfaces to Python and R. Similarly, graph-tool[14] is a
Python package built on the Boost Graph library[15] for
C++. NetworKit[16] follows the same philosophy and uses a
Python interface to a C++ core. The SEJITS[5] project allows
for the definition of embedded Domain Specific Languages
(DSL) for selective embedded just in time (JIT) compilation
to obtain high performance for higher level languages. The
Knowledge Discovery Toolbox (KDT)[17], [18] provides a
Python interface for analysis of large semantic graphs using
filters to define graph operations and SEJITS to provide high
performance. KDT achieves high performance by using an
embedded DSL to compile selective parts of productivity-
oriented languages to lower level languages. Python bindings
to STINGER were developed using SWIG[19] to provide
a productivity-oriented programming language interface to
STINGER. Support for these bindings was discontinued due
to the lack of a multi-threaded graph traversal capability.
These efforts underline the necessity of higher level lan-
guages in graph analysis. However, they suffer from the two
language problem[20] of requiring a productivity-oriented
language for rapid iteration and development and another
low-level language to achieve good performance. Our effort
focuses on implementing graph algorithms completely in a
productivity-oriented language while reusing only the low-
level complex data structure from C, which is necessary to
truly solve the two language problem.

Graph analysis must be parallelized to fully utilize modern
computing resources. STINGER, SNAP, graph-tool, and Net-
worKit use shared memory OpenMP parallelism in their core
implementations to parallelize graph algorithms while igraph
does not offer parallelism. KDT offers parallelism through its
C++/MPI backend. Unlike Python [21] and Ruby, threading
primitives in Julia achieve efficient parallelism because there
is no Global Interpreter Lock (GIL) restricting parallelism
by serializing interpreter operations. The GIL makes par-
allelizing NetworkX and the Python interfaces to complex
low level data structures infeasible. Our package is able to



use threading constructs in the high productivity language
(Julia) rather than only in low-level language constructs,
allowing graph algorithms to be more easily parallelized
without sacrificing performance.

We make the following contributions:
1) First integration with a complex HPC graph data

structure that allows efficient parallel algorithms to be
expressed natively in a productivity-oriented language

2) First rigorous study of Julia atomics and low-level
integration performance characteristics.

3) New atomic collections for Julia that avoid perfor-
mance pitfalls.

II. METHODOLOGY

In order to study the problem of producing high-
performance, high-productivity tools for graph analysis, we
undertook the task of making the STINGER data structure
accessible within the Julia language. In the following sections
we provide an introduction to the STINGER data structure
and the Julia integration interfaces, discuss how we mitigated
several performance pitfalls and complicating factors, and
provide empirical data justifying our design choices.

A. The STINGER graph data structure

We use the STINGER[9], [10] data structure in our ex-
periments. STINGER is a graph data structure that supports
rapid insertions and deletions, especially when compared
to other open-source graph database software packages[22].
The implementation uses many features of low-level C code,
including flexible array members, manual memory alloca-
tion, custom synchronization primitives, and atomic memory
operations.

Several aspects of the STINGER design enable high per-
formance streaming graph analytics. STINGER mitigates the
overhead of dynamic memory allocations by preallocating
one large chunk of memory at startup. Several offsets are
stored to carve all the necessary sub-structures from this
chunk. This design allows multiple processes to map the data
structure into shared memory without invalidating internal
pointers. The STINGER graph data structure consists of a
contiguous array for vertex storage and a pool of edge blocks
for edge storage. An edge block is a small contiguous array
of edges. Each edge within the block is initially empty, but
once filled will store a weight, the time of its creation, and
the time it was last updated in addition to the destination
vertex. The adjacency list of each vertex is stored as a
linked-list of edge blocks. This design conveys some of the
benefits of cache-friendly contiguous data structures while
still allowing for efficient modification. Multiple threads can
read and modify an adjacency list simultaneously. Atomic
memory operations are used to synchronously modify edge
data and append edge blocks to the list.

B. Integrating Julia with STINGER

Julia provides an elegant foreign function interface (FFI)
[23] for interacting with C and Fortran libraries. The Julia

FFI provides a mapping of Julia data structures to C struc-
tures which can be used to create Julia data structures that
are analogous to C data structures. These Julia data structures
can be passed to any C function that takes its C counterpart
as an argument using the ccall function. This approach
is ideal as it allows for the memory allocations to be done
inside Julia.

However, the Julia C FFI structure mappings do not
support mapping the flexible array members in the STINGER
data structure. A flexible array member is declared as an
array with zero length at the end of a struct. When an instance
of the struct is allocated, the size of this member can be
controlled by adding bytes to the total size of the memory
allocation. Understanding the layout of the STINGER data
structure requires both the static struct definitions and the
run-time array size information. Modification of C structs to
comply with the constraints imposed by Julia is not always
feasible for established libraries that are currently in use like
STINGER.

The memory for STINGER, or any C data structure that
cannot be completely mapped by Julia, must be allocated in
C. A handle to the C allocated memory must be maintained
to access this memory from Julia. These restrictions are met
by creating a Julia type that stores the pointer to the C data
structure as a handle. The initialization function that allocates
the memory for STINGER in C is called from Julia on
the creation of this Julia type. Memory is freed by calling
the C deinitialization function in the finalizer of the Julia
type which is called when the Julia garbage collector frees
the Julia object. This approach provides the user with Julia
memory management semantics when working with the Julia
type by allowing the Julia garbage collector (GC) to control
allocations and deallocations in the C heap. However, the
Julia GC only knows the size of the pointer to the object
and does not know the size of the object in the C heap itself.
Therefore, the GC does not prioritize freeing the C object
when it feels memory pressure. This is another reason why
it is preferable to use the complete mapping between Julia
and C if possible.

C. Interacting with C struct fields

The dual memory model described in Section II-B has a
heap managed by Julia, and a heap managed by STINGER
through calls to malloc. The two memory spaces are
separate and not synchronized. To interact with the fields
of the C structure in Julia, the Julia heap has to load/store
from/to the C heap using the handle of the C struct for
each load/store to these fields. A Julia representation of the
fields in the non-mappable C struct has to be maintained
to interact with these fields using Julia syntax. Both a lazy
or eager approach to maintaining such a representation can
be followed. Care must be taken when devising strategies
for synchronizing data structures between the Julia and C
memory spaces.

Using the eager approach, even though we can decode the
C structure using a pointer to a type in Julia, this does not
update when the C memory updates. This puts the onus on



the Julia code to maintain consistency with the C memory.
This could be done by making sure to load the representation
every time a ccall occurs. When using a lazy approach, we
have the additional overhead of having to load the memory
when the user is trying to access it, rather than having an
already loaded object in Julia memory that can be accessed.
Table I summarizes the actions on each operation for both
approaches.

TABLE I
LAZY VS EAGER

Operation Eager Lazy

getfields Already cached Load pointer
setfields Store pointer Store pointer
ccalls Loads occur for every ccall No op

The time taken can be modeled as

T = αS + βL+ γC

where S is the number of sets, L is the number of loads and
C is the number of ccalls and α, β, γ are machine specific
constants in units of s/operation.

For the eager approach,

Te = αSF + βC + γC

where SF is the number of setfields and C is the number of
C calls.

For the lazy approach,

Tl = αSF + βGF + γC

where SF is the number of setfields, GF is the number of
getfields and C is the number of C calls.

Te − Tl = β(C −GF ) (1)

In general we expect workflows to have many more
getfields than ccalls (GF > C). In these cases equation
1 recommends the lazy approach to synchronization as the
most efficient choice. Until established codes can be ported
or support for flexible array members is provided by the FFI,
Julia codes that map complex C data structures will need to
take this approach.

D. Walking data structures directly

Besides mapping the memory for STINGER, the Julia
code must also understand the data layout in order to traverse
the successors of a vertex, such as in the BFS algorithm. The
STINGER data structure stores data representing the edges
of the graph as edge blocks in the flexible array member.
One option to read these edges is to use functions written in
STINGER that read the edge blocks and return an array of
successors to Julia. However, this approach requires gather-
ing the neighbors from the edge blocks into a contiguous
array which is costly and hurts performance significantly
when used in a tight loop. STINGER implements iteration
over edges as a C macro to avoid this slow gathering step
as much as possible.

The second option is to walk the data structure directly
from Julia to read the edge blocks similar to the C macro
used in STINGER. The pointer offsets stored in the metadata
fields of the STINGER data structure are used to correctly
compute the memory address to the required edge blocks and
then load the edges into Julia. A function passed in as an
argument to the iterator function is executed on each edge
loaded in. This option does not incur the cost involved with
gathering the successors into an array.

A pair of traps can be identified here:
1) Julia pointer arithmetic semantics differ from C. Julia

does not increment in multiples of the size of the object
but rather as just bytes. Hence, while computing the
memory location, care needs to be taken to take the
product of the offset and the size of the object the
pointer points to.

2) Structure padding performed by compilers might result
in the sizes of objects being different than the expected
size. Explicit padding done on the C side for most
STINGER data structures helped avoid this ambiguity
in several cases.

Like C++, Julia supports iterators, which encapsulate the
logic required to move between consecutive elements of
a data structure. Using this technique one can load only
required memory from C rather than copying the entire
structure at the outset, thus reducing the memory bandwidth
required. The benefit of iterating directly over the edge
blocks versus gathering successors into a contiguous array
before processing must be determined experimentally. In this
microbenchmark we iterate through the first 1000 vertices
of a Kronecker graph in random order, touching all the
edges for each vertex. We also benchmarked both approaches
using the BFS benchmark. Table II shows the results. While
the iterators are twice as fast as the gathering successors
approach in the experiment, in the BFS implementation the
iterators are around 6x faster. This can be attributed to
these performance differences getting magnified in a real
world workload. We recommend directly walking low-level
complex data structures in Julia in performance critical code.

TABLE II
ITERATORS (I) VS GATHERING SUCCESSORS (G) – ALL TIMES IN MS

Scale Exp (I) Exp (G) BFS (I) BFS (G)

10 1.03 2.43 252.17 1833.70
11 2.21 4.92 504.37 3623.40
12 4.64 10.33 1034.36 7239.56
13 9.70 21.04 2142.28 14461.98
14 20.79 44.18 4328.72 28767.98
15 58.11 107.91 12583.00 67962.16
16 127.92 225.55 27036.85 128637.68

E. Parallelism in Julia
Julia has support for several models of parallelism avail-

able.
1) Remote process execution for a distributed environ-

ment through Channels with Remote Calls and Remote
References similar to the MPI[24] parallelism model.



2) Lightweight ”green” threading through Tasks similar
to the parallelism model in Cilk[25].

3) Native multi-threading support similar to the
OpenMP[26] parallelism model.

Multi-threading is a recently added model to Julia and is an
experimental feature in Julia 0.5. It exposes a @threads
macro which can be used to parallelize loops by affixing it in
front of a for loop, similar to #pragma OMP parallel
for. The @threads loop statically partitions the work
based on loop index without any work stealing.

We use the multi-threading model to parallelize the
BFS implementation in our experiments. This model suits
STINGER as the data structure is stored on a single machine
and multi-threading allows the use of multiple cores with a
single copy of the data structure in shared memory.

Julia is a dynamically typed programming language that
relies on the ability to compile specific methods based on
multiple dispatch to generate fast code using its JIT compiler.
It performs type inference to infer the type of a variable from
the code at compile time. It is a general recommendation
to obtain good performance for any Julia code to use type
stable code. Type stable functions are functions for which the
JIT compiler is able to infer the types of the variables and
the return type at compile time. Multi-threaded Julia code
has issues with type inference and the compiler does not
infer the return type of a function correctly at times. This
can lead to disastrous performance results as functions with
type instabilities are much slower than type stable functions.
This inference issue causes the compiler to unnecessarily
box some variables even when it is not required, leading to
a lot more allocations and loss in performance. We highly
recommend using the @code warntype macro to ensure
that the compiler recognizes the loop body functions as type
stable. Using function barriers to separate the kernel, i.e,
splitting out the @threads for loop into another function
can help remove unnecessary boxing of variables. This is
in contrast to languages like C and Fortran where manual
inlining is a common technique for improving performance.
It is possible to write fast multi-threaded code easily in Julia
using the @threads parallelism model by taking care to
ensure type stability.

F. Atomics in Julia

Good support for atomic operations is an essential part of
any programming language that supports parallelism. Julia
provides a module in Base to support atomic operations on
its Integer and Floating point types using LLVM’s atomic
intrinsics. Julia requires the developer to create an Atomic
type using the value, which stores a reference to the value.
This type ensures that only atomic operations are performed
on these types. Runtime exceptions are raised to prevent non-
atomic operations.

A thread safe queue data structure created using these
atomic types is used for the multi-threaded BFS implementa-
tion. The head and the tail of the queue are Atomic Integers
that are accessed and modified atomically. A standard Vector
stores the values in the queue. Native Julia atomic support

is sufficient for a high-performance implementation of this
data structure.

However, the native Julia atomic support is insufficient
for all of our needs. For example, we required a vector of
integers that needed to be atomically accessed in our BFS
implementation. A vector of native Julia atomic integers is
actually a vector of references to the values. This adds a
layer of indirection to each access which hurts performance.
A global lock on the vector to ensure only one thread can
access the entire vector at a time would guarantee correctness
but reduces concurrency.

Our workload requires new atomic primitives in the Julia
environment as both existing solutions were inefficient. We
created UnsafeAtomics.jl, a package that adds support for
atomic operations on normal Vectors by bypassing the usual
safety requirement that the contents to be instances of the Ju-
lia Atomic type. In idiomatic Julia code, the prefix “unsafe”
refers to operations without correctness guarantees such as
dereferencing arbitrary pointers, which can cause memory
segmentation faults. These unsafe operations are necessary
for efficient interoperability with many C libraries, which use
pointer arithmetic. The UnsafeAtomics approach removes a
layer of indirection, allowing for faster execution of LLVM
atomic instructions. Table II-F presents a microbenchmark
comparing the performance of the two atomic approaches,
in which threads repeatedly execute an atomic compare-and-
swap operation on randomly-chosen elements of a Vector.
The chosen array size yields low contention and an irregular
accesses pattern. The UnsafeAtomics reduce the run time
of the Graph BFS benchmark with 64 randomly chosen
vertices. The new atomic primitives are 20-30% faster in
the microbenchmark and around 20% faster in the BFS
benchmark. As the size of the graph increases, the relative
performance difference between these approaches increases.
These difference vary based on machine-specific factors, but
in general, removing the extra layer of indirection is critical
to achieving parallel speedup in high level languages.

Scale Exp
(N)

Exp
(U)

Exp(N)/
Exp(U)

BFS
(N)

BFS
(U)

BFS(N)/
BFS(U)

10 0.13 0.1 1.3 47.23 43.27 1.10
11 0.27 0.23 1.17 98.99 91.32 1.08
12 0.62 0.47 1.32 217.44 190.74 1.14
13 1.31 0.97 1.35 505.59 420.84 1.20
14 2.7 2.17 1.24 1158.3 977.1 1.185
15 5.74 3.93 1.46 2576.18 2154.5 1.20
16 11.6 8.77 1.32 5565.87 4559.16 1.22

TABLE III
ATOMICS: NATIVE (N) VS UNSAFE (U) (TIMES IN MS)

Julia makes it feasible for developers to extend the lan-
guage and add support for features required by the developer.
These vectors of atomics will allow for the construction
of concurrent data structures and are built by emitting the
appropriate LLVM intrinsics directly. No other widely used
productivity-oriented language allows such seamless use of
compiler intrinsic instructions.



function bfskernel(
alg::LevelSynchronous, s::Stinger,
next::ThreadQueue,
parents::Array{Int64},
level::Array{Int64}
)
@threads for src in level
foralledges(s, src) do edge, src, etype
direction, neighbor = edgeparse(edge)
if (direction != 1)
parent = UnsafeAtomics.unsafe_atomic_cas!(
parents, neighbor+1, -2, src
)
if parent==-2
#Push onto queue
push!(next, neighbor)
end
end
end

end

function bfs(
alg::LevelSynchronous, s::Stinger,
next::ThreadQueue, source::Int64,
parents::Array{Int64}

)
#Set source to -1
parents[source+1]=-1
push!(next, source)
while !isempty(next)
level=next[next.head[]:next.tail[]-1]
#reset the queue
next.head[] = next.tail[]
bfskernel(alg,s,next,parents,level)
end
return parents
end

Listing 1: Julia multithreaded BFS code is both
simple and efficient.

G. The Stinger.jl BFS implementation

We use a straightforward implementation of BFS in Julia.
The operations are conducted in Julia code instead of using
ccalls. The only point of interaction with the C data
structure is accessing the neighbors of a particular vertex.
We use the iterator described in Section II-D to obtain the
neighbors of a given vertex. This allows us to measure the
performance of using a C data structure from Julia rather
than algorithms implemented in C.

This is in contrast to Numpy/Scipy which uses algorithms
written mostly in C with small interfaces in Python. The path
to efficiency in scientific Python is to push as much of the
code into the C side as possible. We chose Julia because it
is possible to write most of the code in Julia and use only
primitive data structure manipulations in C.

A frontier based parallelized version[27] of BFS was
implemented by using the multi-threading parallel model.
We use a thread-safe queue and the @threads macro to
parallelize the loop that explores the vertices of each fron-
tier. The new atomic primitives defined in UnsafeAtomics.jl
allowed for updating the parents array concurrently without
requiring a layer of indirection. The code for the parallel BFS
implementation is attached in Listing 1. The Julia parallel

BFS code looks like pseudo-code because of the ability to
use efficient abstractions. This demonstrates how algorithms
can be written in Julia while only needing to use the C data
structure to obtain data from it and how parallelism is easy
to achieve in Julia.

H. The C BFS implementation
The existing STINGER C BFS implementation is also a

frontier based parallel implementation of BFS using OpenMP
for the parallelism. It marks vertices seen in the BFS
atomically and adds them to the queue if they are seen
for the first time. The BFS implementation in STINGER
distributed by the Dynograph[28] benchmark suite is used
in our experiments. This implementation and benchmark is
used as the representative for an implementation completely
in a low-level language.

I. Benchmark
The Graph500 benchmark[29] is a standard benchmark

used for graphs. A Kronecker graph[30] is created and loaded
into the graph analysis system and breadth-first searches are
performed on randomly chosen vertices in this benchmark.
We wrote a Kronecker graph generator in Julia based on the
reference implementation1 that generates a graph with 2scale

vertices and an edge factor of 16, varying the scale from 10
to 27.

We randomly choose 64 BFS source vertices that are
connected to at least one other vertex as specified by
the Graph500 specification. Both implementations use the
same list of randomly chosen vertices. Our benchmark only
takes into account the time taken to run the BFS and
does not include the time taken for setting up the graph.
BenchmarkTools.jl[31] was used for benchmarking the Julia
BFS implementations. We ran the BFS benchmarks with
1, 6, 12, 24, and 48 threads for Stinger.jl and STINGER
at all scales. The benchmark results can be reproduced by
running the StingerWrapper-Benchmarks[32] repository. The
benchmarks were run on a dual-socket server system with
Intel Xeon E5-2687W v4 processors and 1TB of DDR4
RAM. These performance results compare the first version
of threading in Julia to a mature implementation of OpenMP
3.1.

III. RESULTS

The results of the benchmark normalized to the STINGER
performance can be seen in Fig 1. The sum of runtimes
across all graph scales are compared in Table IV. We see
that the Julia wrapper performs within 1.5x of the STINGER
performance in most cases. The worst case slowdown is
2.14x. It tends to beat the C implementation for small scales,
but for larger scales the C implementation comes out on top.
Fig. 2 demonstrates the parallel scaling of the multithreaded
BFS for a Kronecker graph of scale 27 and edgefactor
16. Fig. 2 demonstrate that Julia multithreading even in its
experimental form is as effective as OpenMP parallelism for
this task.

1https://github.com/graph500/graph500/blob/
master/octave/kronecker_generator.m

https://github.com/graph500/graph500/blob/master/octave/kronecker_generator.m
https://github.com/graph500/graph500/blob/master/octave/kronecker_generator.m


0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 R
un

tim
e

Threads = 1

Stinger
StingerWrapper

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 R
un

tim
e

Threads = 6

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 R
un

tim
e

Threads = 12

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 R
un

tim
e

Threads = 24

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Scale

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 R
un

tim
e

Threads = 48

Fig. 1. Graph500 Benchmark Results (Normalized to STINGER)

TABLE IV
TOTAL TIME TO RUN GRAPH500 BFS BENCHMARK FOR ALL GRAPHS

SCALE 10-27, IN MINUTES

Threads STINGER Stinger.jl Slowdown

1 276.46 250.18 0.90x
6 169.93 237.21 1.40x

12 140.53 185.74 1.32x
24 97.73 145.83 1.49x
48 86.41 103.08 1.19x

1 6 12 24 48
Threads

0

2000

4000

6000

8000

R
un

tim
e 

(s
ec

on
ds

)

Scale 27 BFS

Stinger
StingerWrapper

Fig. 2. Performance scaling with threads

IV. CONCLUSION

The low overhead offered by the Julia FFI and the ability
to write high performance code in Julia makes it feasible to
integrate low-level complex data structures in Julia without
sacrificing performance. The parallelism offered by multi-
threading in Julia 0.5 is mature enough to compete with
OpenMP based computations using our new collections of
atomics which are efficient for memory intense applications
such as graph traversal workloads.

Based on our in-depth study of integrating Julia with
a complex C library, we are able to draw conclusions
about how to design such integrations. Memory transfer and
allocation costs are driving factors in runtime. Julia is ready
to support adoption of complex HPC codes using FFI to
integrate low-level complex data structures.

REFERENCES

[1] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array:
A structure for efficient numerical computation,” Computing in Science
Engineering, vol. 13, no. 2, pp. 22–30, March 2011.

[2] E. Jones, T. Oliphant, and P. Peterson, “{SciPy}: open source scientific
tools for {Python},” 2014.

[3] M. Frigo and S. G. Johnson, “Fftw: An adaptive software architec-
ture for the fft,” in Acoustics, Speech and Signal Processing, 1998.
Proceedings of the 1998 IEEE International Conference on, vol. 3.
IEEE, 1998, pp. 1381–1384.

[4] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney,
J. Du Croz, S. Hammerling, J. Demmel, C. Bischof, and D. Sorensen,
“Lapack: A portable linear algebra library for high-performance
computers,” in Proceedings of the 1990 ACM/IEEE conference on
Supercomputing. IEEE Computer Society Press, 1990, pp. 2–11.



[5] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K. Keutzer,
J. Shalf, K. Yelick, and A. Fox, “Sejits: Getting productivity and
performance with selective embedded jit specialization,” Programming
Models for Emerging Architectures, vol. 1, no. 1, pp. 1–9, 2009.

[6] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proceedings
of the 7th Python in Science Conference (SciPy2008), Pasadena, CA
USA, Aug. 2008, pp. 11–15.

[7] JuliaGraphs, “Lightgraphs.jl,” https://github.com/JuliaGraphs/
LightGraphs.jl, 2017.

[8] D. Campbell, D. Ediger, J. Poovey, and T. Goodyear, “Real-time
Traffic Classification and Graph Analytics for SCinet,” 2014.

[9] D. A. Bader, J. Berry, A. Amos-Binks, D. Chavarrı́a-Miranda, C. Hast-
ings, K. Madduri, and S. C. Poulos, “Stinger: Spatio-temporal interac-
tion networks and graphs (sting) extensible representation,” Georgia
Institute of Technology, Tech. Rep, 2009.

[10] D. Ediger, R. McColl, J. Riedy, and D. A. Bader, “Stinger: High
performance data structure for streaming graphs,” in High Performance
Extreme Computing (HPEC), 2012 IEEE Conference on. IEEE, 2012,
pp. 1–5.

[11] J. Leskovec and R. Sosič, “Snap: Stanford network analysis platform,”
2013.

[12] J. Leskovec et al., “Stanford network analysis platform,” Online:
http://snap. stanford. edu/snap/index. html, f evereiro, 2013.

[13] G. Csardi and T. Nepusz, “The igraph software package for complex
network research,” InterJournal, Complex Systems, vol. 1695, no. 5,
pp. 1–9, 2006.

[14] T. P. Peixoto, “The graph-tool python library,” figshare, 2014.
[15] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library:

User Guide and Reference Manual, Portable Documents. Pearson
Education, 2001.

[16] C. L. Staudt, A. Sazonovs, and H. Meyerhenke, “Networkit: A
tool suite for large-scale complex network analysis,” arXiv preprint
arXiv:1403.3005, 2014.

[17] A. Lugowski, A. Buluç, J. R. Gilbert, and S. Reinhardt, “Scalable
complex graph analysis with the knowledge discovery toolbox,” in
2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2012, pp. 5345–5348.

[18] A. Buluc, E. Duriakova, A. Fox, J. R. Gilbert, S. Kamil, A. Lugowski,
L. Oliker, and S. Williams, “High-productivity and high-performance
analysis of filtered semantic graphs,” in Parallel & Distributed Pro-
cessing (IPDPS), 2013 IEEE 27th International Symposium on. IEEE,
2013, pp. 237–248.

[19] D. M. Beazley et al., “Swig: An easy to use tool for integrating
scripting languages with c and c++.” in Tcl/Tk Workshop, 1996.

[20] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Review, vol. 59, no. 1, pp.
65–98, 2017. [Online]. Available: http://dx.doi.org/10.1137/141000671

[21] D. Beazley, “Understanding the python gil,” in PyCON Python Con-
ference. Atlanta, Georgia, 2010.

[22] R. C. McColl, D. Ediger, J. Poovey, D. Campbell, and D. A. Bader,
“A Performance Evaluation of Open Source Graph Databases,”
in Proceedings of the First Workshop on Parallel Programming
for Analytics Applications, ser. The 1st Workshop on Parallel
Programming for Analytics Applications (PPAA 2014). New
York, NY, USA: ACM, 2014, pp. 11–18. [Online]. Available:
http://doi.acm.org/10.1145/2567634.2567638

[23] “Calling c and fortran code.” [Online]. Available: https://docs.
julialang.org/en/stable/manual/calling-c-and-fortran-code/

[24] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the mpi message passing interface stan-
dard,” Parallel computing, vol. 22, no. 6, pp. 789–828, 1996.

[25] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, Cilk: An efficient multithreaded runtime system.
ACM, 1995, vol. 30, no. 8.

[26] L. Dagum and R. Menon, “Openmp: an industry standard api for
shared-memory programming,” IEEE computational science and en-
gineering, vol. 5, no. 1, pp. 46–55, 1998.

[27] R. E. Korf, W. Zhang, I. Thayer, and H. Hohwald, “Frontier search,”
Journal of the ACM (JACM), vol. 52, no. 5, pp. 715–748, 2005.

[28] E. Hein, “Dynograph,” https://github.com/DynoGraph/
stinger-dynograph, 2017.

[29] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang,
“Introducing the graph 500,” Cray Users Group (CUG), 2010.

[30] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker graphs: An approach to modeling networks,” Jour-
nal of Machine Learning Research, vol. 11, no. Feb, pp. 985–1042,
2010.

[31] J. Revels, “Benchmarktools.jl,” https://github.com/JuliaCI/
BenchmarkTools.jl, 2017.

[32] R. V. Thankachan, “Stingerwrapper-benchmarks,” https://github.com/
rohitvarkey/Stingerwrapper-Benchmarks, 2017.

https://github.com/JuliaGraphs/LightGraphs.jl
https://github.com/JuliaGraphs/LightGraphs.jl
http://dx.doi.org/10.1137/141000671
http://doi.acm.org/10.1145/2567634.2567638
https://docs.julialang.org/en/stable/manual/calling-c-and-fortran-code/
https://docs.julialang.org/en/stable/manual/calling-c-and-fortran-code/
https://github.com/DynoGraph/stinger-dynograph
https://github.com/DynoGraph/stinger-dynograph
https://github.com/JuliaCI/BenchmarkTools.jl
https://github.com/JuliaCI/BenchmarkTools.jl
https://github.com/rohitvarkey/Stingerwrapper-Benchmarks
https://github.com/rohitvarkey/Stingerwrapper-Benchmarks


APPENDIX

int64_t
parallel_breadth_first_search (

struct stinger * S, int64_t nv,
int64_t source, int64_t * marks,
int64_t * queue, int64_t * Qhead, int64_t * level

)
{

OMP("omp parallel for")
for (int64_t i = 0; i < nv; i++) {

level[i] = -1;
marks[i] = 0;

}

int64_t nQ, Qnext, Qstart, Qend;
/* initialize */
queue[0] = source;
level[source] = 0;
marks[source] = 1;
Qnext = 1;/* next open slot in the queue */
nQ = 1;/* level we are currently processing */
Qhead[0] = 0;/* beginning of the current frontier */
Qhead[1] = 1;/* end of the current frontier */

Qstart = Qhead[nQ-1];
Qend = Qhead[nQ];

while (Qstart != Qend) {
OMP ("omp parallel for")
for (int64_t j = Qstart; j < Qend; j++) {

STINGER_FORALL_OUT_EDGES_OF_VTX_BEGIN (
S, queue[j]

) {
int64_t d = level[STINGER_EDGE_DEST];
if (d < 0) {

if (
stinger_int64_fetch_add(
&marks[STINGER_EDGE_DEST], 1
) == 0) {
level[STINGER_EDGE_DEST] = nQ;
int64_t mine = stinger_int64_fetch_add(

&Qnext, 1
);
queue[mine] = STINGER_EDGE_DEST;

}
}

} STINGER_FORALL_OUT_EDGES_OF_VTX_END();
}
Qstart = Qhead[nQ-1];
Qend = Qnext;
Qhead[nQ++] = Qend;
}
return nQ;

}

Listing 2: Stinger C BFS Code


