Performance Effects of Dynamic Graph Data Structures in Community
Detection Algorithms

Rohit Varkey Thankachan!, Brian P. Swenson2, and James P. Fairbanks?2

Abstract— Community detection algorithms create a dynamic
graph as an internal data structure for tracking agglomerative
merges. This community (block) graph is modified heavily
through operations derived from moving vertices between
candidate communities. We study the problem of choosing the
optimal graph representation for this data structure and ana-
lyze the performance implications theoretically and empirically.
These costs are analyzed in the context of Peixoto’s Markov
Chain Monte Carlo algorithm for stochastic block model
inference, but apply to agglomerative hierarchical community
detection algorithms more broadly. This cost model allows for
evaluating data structures for implementing this algorithm and
we identify inherent properties of the algorithm that exclude
certain optimizations.

I. INTRODUCTION

Representation and storage of graphs in computer memory
is a significant factor affecting performance of algorithms
operating on graphs. Each representation has advantages
and disadvantages with respect to memory and performance
considerations for different kinds of graphs and for different
graph algorithms. All real world networks change over time,
and dynamic graph analysis studies the behavior of these
graphs as they are modified with insertions, updates and
deletions. Community detection algorithms often use an
internal data structure to represent the connections between
communities. Viewing these internal data structures as a
dynamic graph enables novel analysis of such community
detection algorithms. Dynamic graph analysis adds further
performance considerations for graph representations be-
cause memory characteristics are determined by both storage
efficiency and the performance of modifications.

Community detection is an important problem in analzing
complex networks [1] with diverse applications in areas such
as social networks, financial networks [2] and biological net-
works [3], [4]. Given a graph g = (V, E'), global community
detection algorithms assign each vertex of the input network
to communities (or blocks), where each community consists
of vertices with more intra-community interactions and fewer
inter-community interactions [5], [6]. Community detection
algorithms infer and extract useful structure and information
from complex networks. Community detection algorithms
exists for both high accuracy applications where getting
the optimal communities is important and high performance
approximations for larger networks where finding optimal

1School of Computer Science, Georgia Institute of Technology, Atlanta,
GA, USA rohitvarkey@gatech.edu

2Georgia Tech Research Institute, Atlanta, GA, USA
brian.swenson, james.fairbanks@gtri.gatech.edu

partitions is impractical. These algorithms are computa-
tionally expensive and require high performance computing
techniques for effective computation.

Several community detection algorithms are based on
hierarchical agglomerative clustering and create a block
multigraph from the given graph using the block assign-
ments and modify this block graph to improve block as-
signments [7]-[9]. In order to study community formation
and detection, stochastic block models, which sample graphs
from distributions where each vertex has a latent block
label and the probability of an edge between two vertices
depends only on the labels of the endpoints, have been
developed and analyzed [10]. Tiago Peixoto’s community de-
tection algorithm [11]-[13] is based on the degree corrected
stochastic block models [14]. It also uses a block graph
during the computation of the community assignments with a
complexity of O(nln’n), where n is the size of V. The 2018
GraphChallenge competition uses this O(nln’n) algorithm
as a baseline algorithm for its streaming stochastic block
model partitioning challenge [15]. Community detection al-
gorithms that use block graphs generally use an inter-block
edge count matrix to represent block graph as a dense or
sparse matrix. Several community detection algorithms use
a weighted adjacency matrix of the block graph, i.e the inter-
block edge count matrix, as the core backing data structure.

The Peixoto community detection algorithm uses a Monte
Carlo Markov Chain (MCMC) approach to sample commu-
nity assignments and proposes a new assignment of blocks
until the target partition is found [11]-[13]. The O(nlngn)
algorithm proceeds by alternating between an agglomerative
merge phase and a nodal update phase. The agglomerative
merge phase is used to create an initial block assignment
from a previous block assignment with a greater number
of blocks. The best merges for the vertices are found and
carried out until a block assignment with the required number
of blocks is obtained. The nodal update phase is performed
then, where a new block is proposed for every vertex in
the graph using the block assignments of neighbors of the
vertex. The change in entropy by carrying out these proposals
are evaluated and accepted or rejected based on a uniform
random draw. The inter-block edge count matrix is updated
with the new rows and columns of the accepted proposal.
Updates to the rows and columns affects the sparsity of the
inter-block edge count matrix. The nodal update iterations
continue until a specified maximum iterations is reached or
the convergence criteria based on the fraction of change of
entropy is obtained. A new inter-block edge count matrix
whose size depends on the number of blocks is created



during each agglomerative phase. The interblock edge count
matrix is dynamically modified in the nodal phase with inser-
tions, deletions and updates occurring to the data structure.

The algorithm starts with n blocks and reduce the number
of blocks by a factor of two until the entropy increases. Once
the partition entropy increases, a golden section search is
used to find the optimal number of blocks [16]. The nodal
update phase of the Peixoto MCMC algorithm removes and
inserts vertices from communities allowing for higher quality
partitions. The Peixoto algorithm aims to minimize overall
entropy [13] as the evaluation metric as opposed to maxi-
mizing modularity based metrics used in other community
detection algorithms such as the Louvain algorithm [17].

Adjacency matrix representations along with external aux-
iliary data structures like max heaps [8], [18], [19], dense
modularity matrices [17], and eigenvectors to optimize per-
formance are seen in literature [20]. These static repre-
sentations of the inter-block edge count matrix, commonly
used in purely agglomerative algorithms, are not designed to
perform well for dynamic operations on the representation.
The nodal update phase tends to dominate the runtime
leading to poor performance of the overall algorithm with
static representations of the inter-block edge count matrix.

While this paper deals with the Peixoto MCMC algorithm,
much of our analysis applies to any community detection
algorithm that uses random sampling of neighborhoods,
modifies an inter-block community matrix, and allows pool-
ing of many small updates into parallel phases.

II. METHODOLOGY
A. Inter-block Edge Count Data Structure

The inter-block edge count structure stores the represen-
tation of the block graph. It is a matrix M, where M;;
represents the number of edges ¢ — j between vertices in
blocks ¢ and j. The updates to the counts in the algorithm
are updated in the structure by setting M;; to the required
value. We represent the inter-block edgecount matrix, M, as
a directed weighted graph, M, where the weights represent
the edge counts between the blocks in the original graph.
We can further break down updates on the inter-block edge
count matrix, M, to the following operations on the graph,
Mg.

1) Insertion: M;; changes from O to a positive integer,
w;; corresponds to adding an edge i — j to Mg with
weight w;;.

2) Deletion: M;; changes from a positive integer, w;; to
0 corresponds to removing an edge ¢ — j from Mg.

3) Updates: M;; changes from a positive integer, w;; to
another positive integer, ng corresponds to updating
the weight of the edge ¢ — j in Mg with weight ng.

Algorithms that assign vertices to communities only once
do not need to consider deletions from this data structure.
Therefore, they use static structures which are usually faster.
We analytically compare different graph representations as
backing stores for this graph and experimentally probe the
performance effects of the data structures on the algorithm.

B. Graph Representations

Memory access patterns have a significant impact on
performance of graph algorithms. For typical graph algo-
rithms like traversal using BFS, graphs have poor spatial and
temporal locality making memory access patterns difficult
to optimize [21]. However, several steps in the proposed
algorithm are able to make use of memory access patterns
as we are dealing with one vertex or one block at a time.
Using data structures that provide us with good locality
for these kinds of memory access is advantageous for the
performance of the algorithm. Adjacency matrix based and
adjacency list based graph representations are used as data
structures to store the block graph. The block graph is
continuously modified through the course of the algorithm
with insertions, updates and deletions of edges in the block
graph. The streaming graph behavior exhibited by the block
graph requires choosing a data structure that is optimized for
streaming graphs to obtain good performance.

1) Dense Matrix: The standard inter-block edge count
matrix used in the Peixoto algorithm. M]i, j] denotes the
number of edges from block ¢ to block j. The memory
complexity required to store graphs with this structure is
O(V?). Memory accesses and updates are quick. However,
the memory complexity renders dense matrices unable to
store large graphs within the memory limitations of even
large computers.

2) Sparse Matrix: The sparse variant of the matrix speci-
fied above. The block graph generally exhibits sparse charac-
teristics. The sparsity offered by the graph can be exploited
to store the graph in a sparse matrix. Sparse matrices are
fast for read operations, but are slow for insertions, updates,
and deletes. Sparse matrices are stored in Compressed Sparse
Row (CSR) or Compressed Sparse Column (CSC) formats
which are the most rigid as compared to the other formats.

3) Hash-map based structures: Hash maps allow for fast
look ups of specific edges, ¢ — j. These data structures
are fast for insertions, deletions and updates. Hash maps
are the most flexible format. However, they can result in
wasted memory due to the use of several near empty hash
maps, especially with sparse vertices. A hash map of hash
maps (nested dictionaries) structure with the outer hash
map containing the source vertex, ¢, and the inner hash
map containing the destination vertex j was used for the
experiments.

4) Dynamic Graphs: STINGER is a data structure that is
designed for high performance analysis on dynamic graphs
similar to the dynamic graph problem created by the block
graph [22], [23]. STINGER preallocates memory for edges
and vertices and edges are added as part of edge blocks.
Edge blocks are a small contiguous amount of memory that
allows for edges to be added in until it is full, at which it
is linked to another edge block. STINGER acts as a linked
list of edge blocks. STINGER adds back edges on insertion
of a directed edge to make quick lookups to in neighbors.
STINGER is an efficient design hybrid with some flexibility
and efficient access patterns. Parallel community detection
on STINGER is well studied [24]-[26].



5) Relational Databases: We explored storing the block
graph in databases like SQLite and PostgreSQL. Databases
have efficient indices for Create, Read, Update and Delete
(CRUD) operations which map directly to the Insert, Read,
Update, and Delete operations on the block graph [27].
A table storing rows with the source vertex, destination
vertex, edgecount, and number of blocks was used along
with indices over the source, destination and number of block
columns for quick lookups. Preliminary experiments revealed
that these options are two orders of magnitude slower than
native data structure options and do not lend themselves to
easy parallelism. The overheads involved with serialization
of data and communication between the database and the
program overshadow any benefits obtained from efficient
indexing. We omit these from the experiments due to these
factors. Deeper integration of traditional database internals
which avoid overheads would provide higher performance
for future work.

C. Parallel implementation

The MCMC based Peixoto algorithm described in Sec-
tion I performs updates to the inter-block edge count matrix
after every accepted proposal in nodal update phase. Efficient
parallelism is hard to obtain with interleaved writes occurring
to a data structure shared among all the threads. The addition
of a lock, which is required to ensure data consistency by
eliminating race conditions, creates a bottleneck for writes to
the data structure. The inter-block edge count matrix from the
previous iteration of the MCMC sweep is used to generate
the proposals for each vertex among all the threads. Keep-
ing track of all the accepted proposals among the threads
eliminates this bottleneck. The approximate nature of the
MCMC algorithm allows for this relaxation while retaining
approximate correctness [15]. The key to parallelism is the
separation of read operations and write operations between
the phases in the algorithm. The parallel phase is read only
and a batched write is done after the parallel phase to perform
the required insertions, updates and deletes to reconcile the
inter-block edge count data structure before the next read
only parallel phase. We can exploit this property to use a
read optimized data structure for the read only parallel phase
and a write optimized data structure for the update phase.

D. Algorithm Cost Analysis

In introducing and analyzing the Peixoto algorithm, overall
cost analysis is shown to be O(nin*n) [11]. For HPC appli-
cations it is important to understand the various components
of an overall runtime bound because the different operations
take different amounts of time on modern computers. We
decompose this runtime analysis into read and write compo-
nents based on operations in the algorithm that access data
from the inter-block edge count matrix, and operations that
modify this matrix.

Read operations are performed for every proposal ex-
amined and write operations that modify the inter-block
edge count matrix are only performed for proposals that are
accepted. Let the number of proposals per vertex be denoted

by NN, and the number of proposals accepted per vertex be
denoted by N.. Let the cost of a read operation be « and the
cost of a write operation be 3. Cost is measured according to
the time or cycles used per operation. The runtime formula
is given by

aN,V + NV (1)

This analysis allows us to study the affect of different
datastructures on the runtime of the overall algorithm. And
our implementation uses generic code to allow for readily
changing out these data structures.

E. Hybrid data structure approach

While separating the computation into read and write
phases is known for the purposes of parallel computation,
we study how the introduction of a hybrid data structure can
be used to improve performance.

Let us assume we are using a read optimized data struc-
ture, R and a write optimized data structure, W. Let the cost
of a read be denoted by ar and ay and cost of writes be
Br and By for the read and write optimized data structures
respectively. Here, ap << aw and Sy << Bgr. The hybrid
approach requires conversions between R and W during the
phases of the algorithm. Let the cost of conversion be v and
number of conversions be ..

The cost of using only the read optimized data structure
will be ag N,V + BrN.V. The cost of using only the write
optimized data structure will be aw N,V + Bw N.V. The
cost of using a hybrid data structure will be arN,V +
Bw NV + vN,.

A read optimized data structure and a write optimized data
structure such that

arNpyV + pw NV + N, < min(arN,V + BrN.V,
OéWNpV + 5wNeV)
(2)

would make the hybrid version faster than either of the
approaches using just the native data structures. We can
write (2) as

27y N,

N,
VN, < Fp(ﬂR — Bw) + (aw — ag) 3)

The amount of data stored affects the cost of reads and
writes in certain data structures. It could be constant, linear or
logarithmic depending on the size of the graph, V. Analysis
of these equations shows that the reads a and the writes Sy
must be constant for arbitrarily large graphs for an optimal
choice of data structure.

F. Sparse Matrix Hybrid

We propose the following hybrid data structure based on
a sparse matrix to be used as the inter-block edge count data
structure in community detection algorithms. Let A be the
adjacency matrix of the input graph, G(V, E'), be represented
as a sparse matrix and C' (C;; = 1 if v; in block j, else 0) the
block assignment matrix of vertices. C' can be implemented



Sparsity pattern change for graph with 5000 nodes

2500 - Block size
At At e S prrvan —— 20
— 21
< 2000 22
& — 23
T 24
§ 1500 - 27
g -
o
S 1000 - — Z‘Z
2 — 79
€
5 157
Z 500- 313
625
— 1250
0 - M- —— 2500
0 200 400 600 800 1000

Nodal Iteration

Fig. 1. Number of rows changed with nodal iterations in the nodal phase for
a 5000 node graph. Sparsity changes significantly for iterations of sizes 2500
and 1250 with almost all rows touched. As the existing partition becomes
more modular, the sparsity changes due to a nodal move become smaller.
Each series is the initial number of vertices n.

as an integer array of size V. Let M be the inter-block edge
count matrix. M can be computed from C and A as

M = C'AC “4)

Let A be a sparse matrix representing updates to C, such
that Cy,ey = C + A. Therefore, substituting in (4),

(C+AYAC+A) (5)
C'AC + NAC + C'AA + AN'AA  (6)

MI’L@’U}

We can batch updates up to the point where time to
compute (C'+A) A(C+A) is less than the time to compute
C'AC + A’AC + C'AA + A’AA. Reads are performed
from the read optimized data structure, the sparse matrix
M, computed after the parallel phase using (6). The write
optimized data structure, the vector, C, is updated after each
parallel phase during the write phase and M is recomputed.
Furthermore, symmetry can be exploited in the case of
undirected graphs to obtain faster computation of (6). M can
be recomputed for streaming graphs by substituting A with
A+ D, where D is sparse matrix representing the updates to
the graph G(V, E) to obtain G'(V', E’). We use this hybrid
data structure in our benchmarks to compare performance
with the other data structures presented in Section II-B.

III. EXPERIMENTS
A. The Julia Programming Language

The baseline algorithm was implemented in the Julia
programming language [28]. We chose Julia for the following
reasons:

1) The Julia language solves the “two language problem”

by offering high performance in a high level language.

2) It supports generic programming and the JIT com-

piler along with multiple dispatch generates specialized
machine code for each set of arguments a method
dispatches on. High performance generic programming

is achieved in this manner. We are able to write a
generic implementation of the partitioning algorithm
and specialize on the parts of the algorithm that require
specialized operations based on the data structure. This
saved development time while yielding high perfor-
mance code.

3) A mature graph library LightGraphs.jl [29].

4) A high performance high level wrapper to the
STINGER library is available in Julia. We have pre-
viously shown that this library obtains performance
comparable to the STINGER C library [30].

5) Julia has easy to use parallelism constructs which we
can utilize to parallelize the algorithm.

B. Input Graph Data Sets

The input graphs used for this work were taken from the
sample graphs that were provided by GraphChallenge. These
are graphs generated using the stochastic block model for a
given number of nodes. The truth partitions for these graphs
are available that help us calculate several correctness metrics
mentioned in the GraphChallenge benchmark specifications.
We use graphs with 50, 100, 500, 1000, 5000 and 20000
nodes to evaluate the partitioning algorithm. We run the
algorithm on the static graph with all vertices and edges.

C. Hardware Used

We used the PACE shared university cluster to run the
experiments [31]. 64 core machines with 160GB of memory
and a runtime limit of 12 hours were available for the
experiments.

Entropy as algorithm proceeds for graph with 1000 nodes

Block size
—

O
Q
N — 10
S
11
— 12
S -
S 13
S 16
>
z 22
2 — 26
o -
5 — 32
© 63
— 125
250
Q [=
S - 500
Q
>
o -
0 50 100 150 200
Nodal Iteration
Fig. 2. Entropy of nodal iterations in the nodal phase for a 1000 node

graph. The nodal phase does not result in significant changes in entropy.
Entropy is shown as overall description length [15].

IV. RESULTS
A. Change in Sparsity Pattern
Since many approaches to high performance algorithms
rely on exploiting sparsity, it is important to quantify this
sparsity. We measured the change in sparsity for each it-
eration of the algorithm. This measures the change in the



data represented independent of the data structure used to
represent it and quantifies how much churn the data structure
will experience. The maximum number of nodal iterations
was capped at 1000. Fig 1 shows the number of rows in
which at least one element changed from a zero to a non-zero
or a non-zero to a zero (inserts or deletes) for the input graph
with 5000 nodes. We see that for the initial larger versions of
the agglomerative phase with number of blocks of 2500 and
1250, the nodal update phase did not converge but continues
until the maximum number of nodal iterations. We can also
notice that for these 2 iterations, the number of rows that
change are almost constant and approximate the total number
of rows in the block graph. For larger graphs, such phases
where almost every row of the sparse matrix changes with
every iteration will dominate the runtime. These updates to
almost every row of the sparse matrix structure are expensive.
This result implies that thus any optimization which relies on
touching only modified rows will fail to deliver meaningful
speedup for this algorithm.

B. Change in Entropy

We measured the entropy of the partition for each iteration
of the algorithm as shown in Fig 2. The changes in entropy
effected by nodal update iterations are quite insignificant as
compared to the changes that occur due to the agglomerative
updates. However, reducing the number of nodal iterations
runs the risk of not obtaining a good partition. It is hard
to find a relationship between the change in entropy and
the stopping condition for the MCMC. This requires further
study to develop an optimal stopping criteria [32].

C. Performance

Minimum runtimes for each data structure

12
10 : Data Structure
- —e— Dense matrix

- —e— Nested Dictionary
1011 - Sparse Matrix
D —— Sparse Hybrid

B Stinger

101

Runtime (ms)

109

108 -

20000

1000 5000
Number of nodes

50 100 500

Fig. 3.  Run time of each data structure as a function of graph size n.
The hybrid data structure is faster than the sparse matrix structure after the
crossover point at n ~ 5000

Figure 4 shows that the hybrid data structure based on
sparse matrices proposed in Section II-F performs better than
the sparse matrix implementation and even better than the
dense matrix implementation as the the size of the input
graph grows. The hybrid data structure exhibits better parallel

scaling metrics than the dense matrix or the sparse matrix.
The sparse matrix and the STINGER implementations did
not complete in the runtime limit of 12 hours to obtain results
for the largest graph of 20000 nodes. We can see a crossover
point occurring in Figure 3 with the sparse matrix and the
hybrid implementations. The hybrid data structure is faster
than the sparse matrix implementation, particularly for larger
graphs as predicted by equation 2.

Minimum runtimes normalized to nested dictionary times

12 - Data structure

Dense matrix

Nested Dictionary

Sparse Matrix

B Sparse Hybrid
Stinger

10 -

Runtime (w.r.t nested dictionary)

fl ol w W “

100 500 1000 5000 20000
Number of nodes

2-
N I‘I
50

Fig. 4. Run time normalized to nested dictionary performance for each
graph size n. Nested dictionary is faster in most cases. Performance of
sparse hybrid data structure is better than sparse matrix, as predicted by
equation 2

The dictionary based structure outperforms all the other
data structures consistently for large graphs. It also exhibits
good parallel scaling as seen from Figure 5. STINGER is
significantly slower than all the other graph representations
used. Having been designed for algorithms such as breadth
first search, STINGER is sacrifices single edge access time
for faster neighborhood traversals. STINGER saves memory
by only storing the edge weight with one direction of an
edge thus, the frequent edge weight lookups required by
the algorithm lead to a performance penalty with STINGER.
The algorithm run time depends mostly on the time for fast
single access edge weight lookups subject to a constraint that
insertions, deletions and updates are fast enough. This result
implies that optimizing for simple, neighborhood oriented
algorithms like BFS can lead to data structures with very
poor performance for complicated, single edge oriented
algorithms like the Peixoto MCMC algorithm.

D. Memory Usage

Table I shows that the dense matrix uses more memory
when compared to the other data structures as expected. The
hybrid implementation uses approximately the same amount
of memory as the sparse matrix implementation but is much
faster. We see similar numbers for the dense matrix, hybrid
and dictionary data structures for the largest graph of 20000
nodes. Dictionary based structures minimize both time and
memory Ccosts.



TABLE I
AVERAGE MEMORY ALLOCATED (NORMALIZED TO DENSE MATRIX
ALLOCATION) FOR 5000 NODES

Name Memory Allocated (GB)  Normalized Memory
Dense matrix 1996.7 1
Nested Dictionary 311.704 0.156
Sparse Matrix 662.199 0.332
Hybrid 665.545 0.333
Stinger 1225.696 0.614

Scaling for Nested Dictionaries

Graph size (Vertices)
—e— 50
—e— 100
500
~&— 1000
5000
20000

101 - \\//\‘

Runtime (ms)

1 2 4 8 16 32 64
Number of threads

Fig. 5. Strong Scaling: Run time as a function of thread count. Scaling
is better for larger values of n where there is more work to be done. Also,
hyperthreading (16—64 threads) is not substantially helpful for this problem.

E. Parallel Performance: Strong Scaling

Figure 5 shows the results of strong scaling experiments
on shared memory nodes of the PACE cluster. For the larger
graphs with 5000 and 20000 nodes, there is strong scaling
up to 8 or 16 cores. For smaller graphs there is not enough
parallel work to be split among the threads so there is
relatively little parallel speedup. The increase in the amount
of work to be done will allow the algorithm to take advantage
of the parallelism better with increasing graph sizes.

TABLE II
AVERAGE DETECTION QUALITY

Name Accuracy  Pairwise precision  Pairwise recall
Dense matrix 0.94 1 0.95
Nested Dictionary 0.93 0.99 0.94
Sparse Matrix 0.96 1 0.97
Sparse Hybrid 0.93 1 0.94
Stinger 0.97 1 0.97

F. Community Detection Quality

In order to verify the correctness of the algorithm one can
examine the quality metrics of the final block assignments
are evaluated using the true partitions of the stochastic block
model. We found that the number of nodal iterations and
fraction of change threshold are two important parameters
for convergence. The parameters used in the experiments

gave good assignments as evidenced by the high average
accuracy, pairwise precision and pairwise recall scores shown
in Table II. There were a few runs where the algorithm
did not converge to a good solution due to the randomized
nature of the algorithm, but overall it returned very good
partitions. Due to the randomized nature of the algorithm,
convergence is not guaranteed and we excluded runs that
failed to converge to good solutions. There is an inherent
trade-off between speed and quality and we studied algo-
rithmic performance when operating at high quality. Future
work should rigorously study this trade-off.

V. CONCLUSION

This paper studies Peixoto’s algorithm for stochastic block
model inference where algorithm performance with various
data structures representing the inter-block edge count matrix
allows us to draw conclusions about the algorithm. We
provide a novel analysis of the algorithm with respect to
inter-block edge count matrix modifications, general method
for evaluating such data structures, and some limitations on
potential optimizations for this algorithm.

The cost analysis shows that using a read optimized
data structure with constant per edge read times and nearly
constant per edge write times, such as nested dictionaries, is
the best solution for this algorithm due to the high ratio of
read operations to write operations. The faster performance
of dictionary implementations over complex solutions such
as the hybrid data structure and dynamic graph proves
that simple data structures that satisfy the read and write
access time constraints can prove to be better than complex
data structures. Hybrid data structures are well suited to
provide accelerated performance by utilizing read optimized
and write optimized forms of the inter-block edge count
matrix. Our theoretical analysis of hybrid data structures
provides a formula to evaluate the acceleration provided by
a hybrid data structure and accurately identifies the observed
acceleration of compressed sparse matrix performance when
used in a hybrid pair.

Inherent to Peixoto’s algorithm are several limitations on
high performance data structures. Reassigning vertices be-
tween communities causes significant changes in the sparsity
pattern of the inter-block edge count matrix. Optimizations
based on sparsity from compressed sparse matrices or dy-
namic graph data structures will not accelerate this algorithm
due to the churn of stored graph. Empirical evidence shows
that entropy decrease is neither a necessary nor sufficient
condition for convergence and more analysis is needed to
find a robust stopping criterion for nodal iterations. Without
reducing the number of nodal moves in the early phases, dy-
namic sparse graph data structures cannot provide significant
speed up.

Dynamic graph data structures focus on optimizing inser-
tion performance at the expense of individual edge access
performance. Transitioning from a vertex oriented compu-
tation to a n edge oriented computation would allow for
optimizations from dynamic graph data structures to have
more impact.



VI. ACKNOWLEDGMENTS

The authors would like to thank Geoffrey Sanders, David
Bader, Eric Hein, and Edward Kao for their feedback on
drafts of this work, along with the anonymous reviewers.
We would also like to acknowledge the research computing
infrastructure resources and services provided by the Part-
nership for an Advanced Computing Environment (PACE)
at the Georgia Institute of Technology.

[1]
[2]

[3]

[4]

[5]
[6]

[7]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

REFERENCES

Mark EJ Newman. Detecting community structure in networks. The
European Physical Journal B, 38(2):321-330, 2004.

Stefano Battiston, James B Glattfelder, Diego Garlaschelli, Fabrizio
Lillo, and Guido Caldarelli. The structure of financial networks. In
Network Science, pages 131-163. Springer, 2010.

Michelle Girvan and Mark EJ Newman. Community structure in social
and biological networks. Proceedings of the national academy of
sciences, 99(12):7821-7826, 2002.

Martin Rosvall and Carl T Bergstrom. Maps of random walks on
complex networks reveal community structure. Proceedings of the
National Academy of Sciences, 105(4):1118-1123, 2008.

Santo Fortunato. Community detection in graphs. Physics reports,
486(3-5):75-174, 2010.

Andrea Lancichinetti and Santo Fortunato. Community detection
algorithms: a comparative analysis. Physical review E, 80(5):056117,
2009.

Martin Rosvall and Carl T Bergstrom. Multilevel compression of
random walks on networks reveals hierarchical organization in large
integrated systems. PloS one, 6(4):¢18209, 2011.

Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding
community structure in very large networks. Physical review E,
70(6):066111, 2004.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and
Etienne Lefebvre. Fast unfolding of communities in large net-
works. Journal of statistical mechanics: theory and experiment,
2008(10):P10008, 2008.

Emmanuel Abbe. Community detection and stochastic block models:
recent developments. arXiv preprint arXiv:1703.10146, 2017.

Tiago P Peixoto. Efficient monte carlo and greedy heuristic for the in-
ference of stochastic block models. Physical Review E, 89(1):012804,
2014.

Tiago P Peixoto. Parsimonious module inference in large networks.
Physical review letters, 110(14):148701, 2013.

Tiago P Peixoto. Entropy of stochastic blockmodel ensembles.
Physical Review E, 85(5):056122, 2012.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and
community structure in networks. Physical Review E, 83(1):016107,
2011.

Edward Kao, Vijay Gadepally, Michael Hurley, Michael Jones, Jeremy
Kepner, Sanjeev Mohindra, Paul Monticciolo, Albert Reuther, Sid-
dharth Samsi, William Song, et al. Streaming graph challenge:
Stochastic block partition. arXiv preprint arXiv:1708.07883, 2017.

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

E Isaacson, William H Press, Brian P Flannery, Saul A Teukolsky,
and William T Vetterling. Numerical Recipes: The Art of Scientific
Computing. SIAM Review, 30(2):331-332, jun 1988.

Mark EJ Newman. Modularity and community structure in networks.
Proceedings of the national academy of sciences, 103(23):8577-8582,
2006.

Jordi Duch and Alex Arenas. Community detection in complex net-
works using extremal optimization. Physical review E, 72(2):027104,
2005.

Zhongying Zhao, Shengzhong Feng, Qiang Wang, Joshua Zhexue
Huang, Graham J Williams, and Jianping Fan. Topic oriented com-
munity detection through social objects and link analysis in social
networks. Knowledge-Based Systems, 26:164—173, 2012.

Symeon Papadopoulos, Yiannis Kompatsiaris, Athena Vakali, and
Ploutarchos Spyridonos. Community detection in social media. Data
Mining and Knowledge Discovery, 24(3):515-554, 2012.

Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and
Jonathan Berry. Challenges in parallel graph processing. Parallel
Processing Letters, 17(01):5-20, 2007.

David A Bader, Jonathan Berry, Adam Amos-Binks, Daniel Chavarria-
Miranda, Charles Hastings, Kamesh Madduri, and Steven C Poulos.
STINGER: Spatio-temporal interaction networks and graphs (sting)
extensible representation. Georgia Institute of Technology, Tech. Rep,
2009.

David Ediger, Robert McColl, Jason Riedy, and David A Bader.
STINGER: High performance data structure for streaming graphs. In
High Performance Extreme Computing (HPEC), 2012 IEEE Confer-
ence on, pages 1-5. IEEE, 2012.

E Jason Riedy, Henning Meyerhenke, David Ediger, and David A
Bader. Parallel community detection for massive graphs. In Inter-
national Conference on Parallel Processing and Applied Mathematics
(PPAM), pages 286-296. Springer, 2011.

Jason Riedy, David A Bader, and Henning Meyerhenke. Scalable
multi-threaded community detection in social networks. In Parallel
and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2012 IEEE 26th International, pages 1619-1628. IEEE,
2012.

Jason Riedy and David A Bader. Multithreaded community monitoring
for massive streaming graph data. In Parallel and Distributed Pro-
cessing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE
27th International, pages 1646—1655. IEEE, 2013.

Ramez Elmasri and Shamkant Navathe. Fundamentals of database
systems. Addison-Wesley Publishing Company, 2010.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah.
Julia: A fresh approach to numerical computing. SIAM review,
59(1):65-98, 2017.

Seth Bromberger, James Fairbanks, and other contributors.
Graphs/LightGraphs.jl: LightGraphs v0.13.1, Sep 2017.
Rohit Varkey Thankachan, Eric R Hein, Brian P Swenson, and James P
Fairbanks. Integrating productivity-oriented programming languages
with high-performance data structures. In High Performance Extreme
Computing Conference (HPEC), 2017 IEEE, pages 1-8. IEEE, 2017.
PACE. Partnership for an Advanced Computing Environment (PACE),
2017.

Eisha Nathan, Geoffrey Sanders, James P Fairbanks, David A Bader,
et al. Graph ranking guarantees for numerical approximations to katz
centrality. Procedia Computer Science, 108:68-78, 2017.

Julia-



