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Graph Analysis

I Applications: Cybersecurity, Social Media, Fraud Detection...

(a) Big Graphs (b) HPC

(c) Productivity
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Types of Graph Analysis Libraries

I Purely High productivity Language with simple data structures

I Low level language core with high productivity language
interface.

Name High Level Interface Low Level Core Parallelism

SNAP Python C++ OpenMP
igraph Python, R C -
graph-tool Python C++ (BGL) OpenMP
NetworKit Python C++ OpenMP
Stinger Julia (new) C OpenMP/Julia

Table 1: Libraries using the hybrid model
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Why is graph analysis is harder than scientific computing?

(a) z = exp(a + b2) (b) BFS from s

Figure 2: Computations access patterns in scientific computing and graph
analysis

I Less regular computation

I Diverse user defined functions beyond arithmetic

I Temporary allocations kill performance
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High Productivity Languages

Feature Python R Ruby Julia

REPL X X X X
Dynamic Typing X X X X
Compilation × × × X
Multithreading Limited × Limited X

Table 2: Comparison of features of High Productivity Languages
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The Julia Programming Language

I Since 2012 - pretty new!

I Multiple dispatch

I Dynamic Type system

I JIT Compiler

I Metaprogramming

I Single machine and Distributed Parallelism

I Open Source (MIT License)
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STINGER

I A complex data structure for graphs in C
I Parallel primitives for graph algorithms
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Addressing the 2 language problem using Julia

I Two languages incurs development complexity

I All algorithms in Julia

I Reuse only the complex STINGER data structure from C

I Parallel constructs in Julia, NOT low level languages
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Integrating Julia with STINGER

I All algorithms in Julia

I Reuse only the complex STINGER data structure from C

I Parallel constructs in Julia, not low level languages

I Productivity + Performance!
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Graph 500 benchmark

I Standard benchmark for large graphs
I BFS on a RMAT graph

I 2scale vertices
I 2scale ∗ 16 edges

I Comparing BFS on graphs from scale 10 to 27 in C and using
StingerGraphs.jl

I A multithreaded version of the BFS with up to 64 threads was
also run using both libraries
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Results Preview
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Figure 3: Graph500 Benchmark Results (Normalized to STINGER – C)
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Legacy data structures require synchronizing memory
spaces

Two approaches lead to different performance characteristics

Operation Eager Lazy

getfields Already cached Load pointer
setfields Store pointer Store pointer
ccalls Load for every ccall No op

Table 3: Methods for synchronizing C heap with Julia memory Lazy vs
Eager
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Moving data kills performance

Bulk transfer of memory between memory spaces is more expensive
than direct iteration

Scale Exp (I) Exp (G) BFS (I) BFS (G)

10 1.03 2.43 252.17 1833.70
11 2.21 4.92 504.37 3623.40
12 4.64 10.33 1034.36 7239.56
13 9.70 21.04 2142.28 14461.98
14 20.79 44.18 4328.72 28767.98
15 58.11 107.91 12583.00 67962.16
16 127.92 225.55 27036.85 128637.68

Table 4: Iterators (I) vs Gathering successors (G) – all times in ms

Surprise!

13 / 20



Moving data kills performance

Bulk transfer of memory between memory spaces is more expensive
than direct iteration

Scale Exp (I) Exp (G) BFS (I) BFS (G)

10 1.03 2.43 252.17 1833.70
11 2.21 4.92 504.37 3623.40
12 4.64 10.33 1034.36 7239.56
13 9.70 21.04 2142.28 14461.98
14 20.79 44.18 4328.72 28767.98
15 58.11 107.91 12583.00 67962.16
16 127.92 225.55 27036.85 128637.68

Table 4: Iterators (I) vs Gathering successors (G) – all times in ms

Surprise!
13 / 20



Parallelism options in Julia

I MPI style remote processes

I Cilk style Tasks that are lightweight “green” threads

I OpenMP style native multithreading support - @threads

We use the @threads primitives to avoid communication costs
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Julia Atomics

I Atomic type on which atomic ops are dispatched

I Atomic{T} contains a reference to a Julia variable of type T

I Extra level of indirection for a vector of atomics

Figure 4: Julia provides easy access to LLVM/Clang intrinsics
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Unsafe Atomics

Standard atomic types give poor performance, UnsafeAtomics.jl
package reduces overhead.

Figure 5: Atomic data structures in Julia
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Unsafe Atomics Performance

Scale
Exp
(N)

Exp
(U)

Exp(N)/
Exp(U)

BFS
(N)

BFS
(U)

BFS(N)/
BFS(U)

10 0.13 0.1 1.3 47.23 43.27 1.10
11 0.27 0.23 1.17 98.99 91.32 1.08
12 0.62 0.47 1.32 217.44 190.74 1.14
13 1.31 0.97 1.35 505.59 420.84 1.20
14 2.7 2.17 1.24 1158.3 977.1 1.185
15 5.74 3.93 1.46 2576.18 2154.5 1.20
16 11.6 8.77 1.32 5565.87 4559.16 1.22

Table 5: Atomics: Native (N) VS Unsafe (U) (Times in ms)
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Runtimes

Threads STINGER Stinger.jl Slowdown

1 276.46 250.18 0.90x
6 169.93 237.21 1.40x

12 140.53 185.74 1.32x
24 97.73 145.83 1.49x
48 86.41 103.08 1.19x

Table 6: Total time to run Graph500 BFS benchmark for all graphs scale
10-27, in minutes
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Results: Parallel Scaling is competitive with OpenMP
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Figure 6: Performance scaling with threads
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Conclusions

I Tight integration between high productivity and high
performance languages is possible

I Julia is ready for HPC graph workloads

I Julia parallelism can compete with OpenMP parallelism

I We can expand HPC in High Level Languages beyond
traditional scientific applications
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