
Integrating Productivity-Oriented Programming
Languages with High-Performance Data

Structures

James Fairbanks
Rohit Varkey Thankachan, Eric Hein, Brian Swenson

Georgia Tech Research Institute

September 13 2017

1 / 20



Graph Analysis

I Applications: Cybersecurity, Social Media, Fraud Detection...

(a) Big Graphs (b) HPC

(c) Productivity

2 / 20



Types of Graph Analysis Libraries

I Purely High productivity Language with simple data structures

I Low level language core with high productivity language
interface.

Name High Level Interface Low Level Core Parallelism

SNAP Python C++ OpenMP
igraph Python, R C -
graph-tool Python C++ (BGL) OpenMP
NetworKit Python C++ OpenMP
Stinger Julia (new) C OpenMP/Julia

Table 1: Libraries using the hybrid model

3 / 20



Why is graph analysis is harder than scientific computing?

(a) z = exp(a + b2) (b) BFS from s

Figure 2: Computations access patterns in scientific computing and graph
analysis

I Less regular computation

I Diverse user defined functions beyond arithmetic

I Temporary allocations kill performance

4 / 20



High Productivity Languages

Feature Python R Ruby Julia

REPL X X X X
Dynamic Typing X X X X
Compilation × × × X
Multithreading Limited × Limited X

Table 2: Comparison of features of High Productivity Languages

5 / 20



The Julia Programming Language

I Since 2012 - pretty new!

I Multiple dispatch

I Dynamic Type system

I JIT Compiler

I Metaprogramming

I Single machine and Distributed Parallelism

I Open Source (MIT License)

6 / 20



STINGER

I A complex data structure for graphs in C
I Parallel primitives for graph algorithms

7 / 20



Addressing the 2 language problem using Julia

I Two languages incurs development complexity

I All algorithms in Julia

I Reuse only the complex STINGER data structure from C

I Parallel constructs in Julia, NOT low level languages

8 / 20



Integrating Julia with STINGER

I All algorithms in Julia

I Reuse only the complex STINGER data structure from C

I Parallel constructs in Julia, not low level languages

I Productivity + Performance!

9 / 20



Graph 500 benchmark

I Standard benchmark for large graphs
I BFS on a RMAT graph

I 2scale vertices
I 2scale ∗ 16 edges

I Comparing BFS on graphs from scale 10 to 27 in C and using
StingerGraphs.jl

I A multithreaded version of the BFS with up to 64 threads was
also run using both libraries

10 / 20



Results Preview

10 12 14 16 18 20 22 24 26
0.0

0.5

1.0

1.5

2.0

2.5
No

rm
al

ize
d 

Ru
nt

im
e

Threads = 1
Stinger
StingerGraphs.jl

10 12 14 16 18 20 22 24 26

No
rm

al
ize

d 
Ru

nt
im

e

Threads = 6

10 12 14 16 18 20 22 24 26
Scale

No
rm

al
ize

d 
Ru

nt
im

e

Threads = 12

10 12 14 16 18 20 22 24 26
Scale

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d 
Ru

nt
im

e

Threads = 24

10 12 14 16 18 20 22 24 26
Scale

No
rm

al
ize

d 
Ru

nt
im

e
Threads = 48

Figure 3: Graph500 Benchmark Results (Normalized to STINGER – C)

11 / 20



Legacy data structures require synchronizing memory
spaces

Two approaches lead to different performance characteristics

Operation Eager Lazy

getfields Already cached Load pointer
setfields Store pointer Store pointer
ccalls Load for every ccall No op

Table 3: Methods for synchronizing C heap with Julia memory Lazy vs
Eager

12 / 20



Moving data kills performance

Bulk transfer of memory between memory spaces is more expensive
than direct iteration

Scale Exp (I) Exp (G) BFS (I) BFS (G)

10 1.03 2.43 252.17 1833.70
11 2.21 4.92 504.37 3623.40
12 4.64 10.33 1034.36 7239.56
13 9.70 21.04 2142.28 14461.98
14 20.79 44.18 4328.72 28767.98
15 58.11 107.91 12583.00 67962.16
16 127.92 225.55 27036.85 128637.68

Table 4: Iterators (I) vs Gathering successors (G) – all times in ms

Surprise!

13 / 20



Moving data kills performance

Bulk transfer of memory between memory spaces is more expensive
than direct iteration

Scale Exp (I) Exp (G) BFS (I) BFS (G)

10 1.03 2.43 252.17 1833.70
11 2.21 4.92 504.37 3623.40
12 4.64 10.33 1034.36 7239.56
13 9.70 21.04 2142.28 14461.98
14 20.79 44.18 4328.72 28767.98
15 58.11 107.91 12583.00 67962.16
16 127.92 225.55 27036.85 128637.68

Table 4: Iterators (I) vs Gathering successors (G) – all times in ms

Surprise!
13 / 20



Parallelism options in Julia

I MPI style remote processes

I Cilk style Tasks that are lightweight “green” threads

I OpenMP style native multithreading support - @threads

We use the @threads primitives to avoid communication costs

14 / 20



Julia Atomics

I Atomic type on which atomic ops are dispatched

I Atomic{T} contains a reference to a Julia variable of type T

I Extra level of indirection for a vector of atomics

Figure 4: Julia provides easy access to LLVM/Clang intrinsics

15 / 20



Unsafe Atomics

Standard atomic types give poor performance, UnsafeAtomics.jl
package reduces overhead.

Figure 5: Atomic data structures in Julia

16 / 20



Unsafe Atomics Performance

Scale
Exp
(N)

Exp
(U)

Exp(N)/
Exp(U)

BFS
(N)

BFS
(U)

BFS(N)/
BFS(U)

10 0.13 0.1 1.3 47.23 43.27 1.10
11 0.27 0.23 1.17 98.99 91.32 1.08
12 0.62 0.47 1.32 217.44 190.74 1.14
13 1.31 0.97 1.35 505.59 420.84 1.20
14 2.7 2.17 1.24 1158.3 977.1 1.185
15 5.74 3.93 1.46 2576.18 2154.5 1.20
16 11.6 8.77 1.32 5565.87 4559.16 1.22

Table 5: Atomics: Native (N) VS Unsafe (U) (Times in ms)

17 / 20



Runtimes

Threads STINGER Stinger.jl Slowdown

1 276.46 250.18 0.90x
6 169.93 237.21 1.40x

12 140.53 185.74 1.32x
24 97.73 145.83 1.49x
48 86.41 103.08 1.19x

Table 6: Total time to run Graph500 BFS benchmark for all graphs scale
10-27, in minutes

18 / 20



Results: Parallel Scaling is competitive with OpenMP

1 6 12 24 48
Threads

0

2000

4000

6000

8000

10000
Ru

nt
im

e 
(s

ec
on

ds
)

Scale 27 BFS
Stinger
StingerGraphs.jl

Figure 6: Performance scaling with threads

19 / 20



Conclusions

I Tight integration between high productivity and high
performance languages is possible

I Julia is ready for HPC graph workloads

I Julia parallelism can compete with OpenMP parallelism

I We can expand HPC in High Level Languages beyond
traditional scientific applications

20 / 20


	Introduction
	Methodology
	Results: Parallel run times are comparable for Graph500

