Performance Effects of Dynamic Graph Data
Structures in Community Detection
Algorithms

Rohit Varkey Thankachan, Brian P. Swenson, and James P. Fairbanks
Georgia Tech Research Institute, Atlanta, GA, USA
james.fairbanks@gtri.gatech.edu

Slides available at: http://jpfairbanks.com/publication/hpec2018/

September 26, 2018

http://jpfairbanks.com/publication/hpec2018/

Summary

webservices

; H IVE amazon

250 Sparsity pattern change

2

Number of rows changed
g & g
I |

pow parsay

z
g
g
3
2
3
2

— a5
O - Sparse ybrid

A

Number of nodes

‘mmmo

AT T
£5%
s

——————

Introduction
o LR HIVE o aazon

e Motivated by graph challenge

e Memory representations of graphs are significant for
performance

e Many agglomerative community detection algorithms build a
community graph

e Performance of the community graph data structure
dominates runtime

e How can we study the performance of this inner loop data
structure?

e Conclusions about data structures using the algorithm

e Conclusions about the algorithm using the data structures

How do we choose a IBECM datastructure for this algorithm?

Experimental Performance

Theoretical cost model

Hybrid Data Structure

Sparsity change and entropy decrease set fundamental limits

Dynamic Graph for IBECM

™
Q
=
(2]
nru
Sy
Q
(0 4
c
S
=
Q
Q
=
Q
(@]
>
5=
c
=
£
£
(=]
O

Figure 2: 4 detected communities

Figure 1: A graph

Piexoto’s Algorithm

Bz nodes -7 S~o
E edges -7 \‘\\
. . I ’\ RN
e Agglomerative algorithm T - o
that produces hierarchical el Sl %
clusters ey g
&
e Nodal Phase moves vertices
between clusters best cluster
per vertex el
g
e Merge Phase identifies g
3
clusters to merge g
3

Image Credit: Piexoto 2014 https://doi.org/10.1103/PhysRevX.4.011047

Inter-block Edge Count Matrix Operations

Mi; counts number of edges between a vertices in community / and

vertices in community j and vertices in community

. Insertion: Mj;, 0+ +, adding an edge i — j

. Deletion: Mj;, + + 0, removing an edge / — j

1
2
3. Updates: Mj;, wjj — WIZ updating the weight of the edge
4. Static structures are faster if you can use them

5

. Algorithms that assign vertices to communities only once do
not delete

Graph Formats

Memory access dominates graph algorithm performance. For
typical graph algorithms like BFS, graphs have poor spatial and
temporal locality making them hard to optimize [3].

e Dense Matrix

Sparse Matrix

Hash-map based structures

Dynamic Graphs

Relational Databases

Parallel Implementation

e Locking for correctness is slow
e MCMC allows you to relax strict ordering of operations [2]

e Parallel phases: read phase then write phase.

Performance

Relative Runtime

102
Data Structure
== Dense matrix
- Nested Dictionary
—_ Sparse Matrix
g 10 //\ ~— Sparse Hybrid
; = Stinger
E
c '\o\\
2 100 ==

\

-1
10 50 100 500 1000

5000 20000

Number of nodes

Figure 3: Run time of each data structure as a function of graph size n.

The hybrid data structure is faster than the sparse matrix structure after

the crossover point at n ~ 5000

10

Algorithm Cost Analysis i

e Piexto algorithm over cost is O(nlog?n) [4].

e For HPC applications we need components of the overall
runtime bound because the different operations take different
amounts of time

e Read operations access M (proposed moves)
e Write operations modify M (accepted moves)
e Proposals per vertex be denoted by N,

e Proposals accepted per vertex be denoted by N,

11

Algorithm Cost Analysis ii

Let the cost of a read operation be a and the cost of a write
operation be 3. Cost is measured according to the time or cycles
used per operation. The runtime formula is given by

aN,V + BN,V (1)

e Aggregate operation counts control performance
e Different Data structures show different performance

e QOur code uses Julia and multiple dispatch to allow
hot-swapping implementations

12

Sparse Matrix Hybrid

Taking a page from streaming graph algorithms an incremental
linear algebra, IBECM M satisfies:

M = C'AC (2)

Let A represent updates to C, such that Chey, = C + A

Muew = (C+A)YAC+A) (3)
= C'AC+ A'AC + C'AA + ANAA (4)

13

Hybrid Data Structure Approach

From read-write analysis of the algorithm, we derived a threshold
on when a hybrid algorithm is an improvement:

2y N,

VN, < ,I:I,Z(BR - Bw) + (aw — ar) (5)

Basically, single point reads must be constant time for optimal

data structure.

14

Normalized Run Time

3.0

Normalized run times
Data structure
Dense matrix
Nested Dictionary

Sparse Matrix
Sparse Hybrid

100 500 1000 5000 20000
Number of nodes

o
(]

e
o

=
5

=
=}

Runtime (w.r.t nested dictionary)
O
U’1

o
o

Figure 4: Run time normalized to nested dictionary performance for
each graph size n. Nested dictionary is faster in most cases. Performance
of sparse hybrid data structure is better than sparse matrix, as predicted.

ii5)

Memory Usage

Table 1: Average Memory Allocated (Normalized to dense matrix
allocation) for 5000 nodes

Name Memory Allocated (GB) Normalized Memory
Dense matrix 1996.7 1
Nested Dictionary 311.704 0.156
Sparse Matrix 662.199 0.332
Hybrid 665.545 0.333
Stinger 1225.696 0.614

16

The Julia Programming Language
(U
julia

e Solves the “two language problem” by offering high
performance in a high productivity language

Generic Programming with multiple dispatch allows for
swapping data structures

A mature graph library LightGraphs.jl [1].
Building on previous work with STINGER.j| [5].

Easy to use parallel @threads.

17

Sparsity Change Analysis

Sparsity pattern change

2500
oA AR AR AR AR AL Block size
o — 20
& 2000 o
=
o 22
— 23
o 1500 -z
=
e — 27 .
‘G 1000 — 32
g 40
— 55
€ 500 — 64
=}
= — 79
0 e — 157
0 200 400 600 313 oo
Nodal Iteration — 625

— T2RN

Figure 5: Number of rows changed in the nodal iteration phase

(V=5000). Sparsity changes are stable for iterations of sizes 2500 and

1250 with almost all rows touched every time. As the existing partition 18

Community Detection Quality

Table 2: Average Detection Quality

Name Accuracy Pairwise precision Pairwise recall
Dense matrix 0.94 1 0.95
Nested Dictionary 0.93 0.99 0.94
Sparse Matrix 0.96 1 0.97
Sparse Hybrid 0.93 1 0.94
Stinger 0.97 1 0.97

e Detection quality is similar across all data structures

e Variation due to parallel benign races

19

Entropy Decrease as a Stopping Criterion

Entropy of nodal iterations for a 1000 node graph.

QQé’ Entropy as algorithm proceeds

] EXES iz

The nodal phase doesn’t > =
%0000 =0

decrease entropy. BN 1
Q@Q — 12

EQ’QQ@“ — 13

£ < — 16

S, — 22

o 26

32

63

125

250

0 50 100 150 : 500 !50
Nodal Iteration

Entropy measured as

description length [2]

’000*’00 2,
%
[11

Entropy change is not a good proxy for stopping criterion.

20

Conclusion

e Qur theoretical analysis allows you to choose between data
structures (or hybrids) a priori.

e Entropy analysis fails as a stopping criteria

e Large sparsity churn in this algorithm sets a limit on
performance improvement

e Hard Problem: developing dynamic graph data structures for
large sparsity churn

21

Acknowledgments

Rohit Varkey
Thankachan

Edward Kao David Bader Eric Hein

and the PACE team at Georgia Tech
22

Strong Scaling

1013 Scaling for Nested Dictionaries

Graph size (Vertices)
1012 Ew
100 .
500

1
10 \/ 1000

5000
20000 ¢ 23

383888

Runtime (ms)
B
«

1 2 4 8 16 32 64
Number of threads

Figure 6: Strong Scaling: Run time as a function of thread count.
Scaling is better for larger values of n where there is more work to be
done. Also, hyperthreading (16 — 64 threads) is not substantially helpful
for this problem.

References

B

Seth Bromberger, James Fairbanks, and other contributors.
JuliaGraphs/LightGraphs.jl: LightGraphs v0.13.1, Sep

2017.

Edward Kao, Vijay Gadepally, Michael Hurley, Michael Jones, 24
Jeremy Kepner, Sanjeev Mohindra, Paul Monticciolo, Albert
Reuther, Siddharth Samsi, William Song, et al.

Streaming graph challenge: Stochastic block partition.

arXiv preprint arXiv:1708.07883, 2017.

Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and
Jonathan Berry.

Challenges in parallel graph processing.

Parallel Processing Letters, 17(01):5-20, 2007.

Tiago P Peixoto.
Efficient monte carlo and greedy heuristic for the

P .

	Inter-block Edge Count Data Structure
	Parallel Implementation
	Input Graph Data Sets
	Change in Sparsity Pattern
	Parallel Performance: Strong Scaling

