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Introduction

• Motivated by graph challenge

• Memory representations of graphs are significant for

performance

• Many agglomerative community detection algorithms build a

community graph

• Performance of the community graph data structure

dominates runtime

• How can we study the performance of this inner loop data

structure?

• Conclusions about data structures using the algorithm

• Conclusions about the algorithm using the data structures
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Outline

• How do we choose a IBECM datastructure for this algorithm?

• Experimental Performance

• Theoretical cost model

• Hybrid Data Structure

• Sparsity change and entropy decrease set fundamental limits

• Dynamic Graph for IBECM
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Community Detection Refresher

Figure 1: A graph Figure 2: 4 detected communities
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Piexoto’s Algorithm

• Agglomerative algorithm

that produces hierarchical

clusters

• Nodal Phase moves vertices

between clusters best cluster

per vertex

• Merge Phase identifies

clusters to merge

Image Credit: Piexoto 2014 https://doi.org/10.1103/PhysRevX.4.011047
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Inter-block Edge Count Matrix Operations

Mij counts number of edges between a vertices in community i and

vertices in community j and vertices in community j

1. Insertion: Mij , 0 7! +, adding an edge i ! j

2. Deletion: Mij , + 7! 0, removing an edge i ! j

3. Updates: Mij , wij 7! w 0
ij , updating the weight of the edge

4. Static structures are faster if you can use them

5. Algorithms that assign vertices to communities only once do

not delete
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Graph Formats

Memory access dominates graph algorithm performance. For

typical graph algorithms like BFS, graphs have poor spatial and

temporal locality making them hard to optimize [3].

• Dense Matrix

• Sparse Matrix

• Hash-map based structures

• Dynamic Graphs

• Relational Databases
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Parallel Implementation

• Locking for correctness is slow

• MCMC allows you to relax strict ordering of operations [2]

• Parallel phases: read phase then write phase.
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Performance

Figure 3: Run time of each data structure as a function of graph size n.

The hybrid data structure is faster than the sparse matrix structure after

the crossover point at n ⇡ 5000
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Algorithm Cost Analysis i

• Piexto algorithm over cost is O(nlog2n) [4].

• For HPC applications we need components of the overall

runtime bound because the di↵erent operations take di↵erent

amounts of time

• Read operations access M (proposed moves)

• Write operations modify M (accepted moves)

• Proposals per vertex be denoted by Np

• Proposals accepted per vertex be denoted by Ne
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Algorithm Cost Analysis ii

Let the cost of a read operation be ↵ and the cost of a write

operation be �. Cost is measured according to the time or cycles

used per operation. The runtime formula is given by

↵NpV + �NeV (1)

• Aggregate operation counts control performance

• Di↵erent Data structures show di↵erent performance

• Our code uses Julia and multiple dispatch to allow

hot-swapping implementations
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Sparse Matrix Hybrid

Taking a page from streaming graph algorithms an incremental

linear algebra, IBECM M satisfies:

M = C 0AC (2)

Let � represent updates to C , such that Cnew = C +�

Mnew = (C +�)0A(C +�) (3)

= C 0AC +�0AC + C 0A�+�0A� (4)
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Hybrid Data Structure Approach

From read-write analysis of the algorithm, we derived a threshold

on when a hybrid algorithm is an improvement:

2�

V

Nc

Np
<

Ne

Np
(�R � �W ) + (↵W � ↵R) (5)

Basically, single point reads must be constant time for optimal

data structure.
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Normalized Run Time

Figure 4: Run time normalized to nested dictionary performance for

each graph size n. Nested dictionary is faster in most cases. Performance

of sparse hybrid data structure is better than sparse matrix, as predicted.
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Memory Usage

Table 1: Average Memory Allocated (Normalized to dense matrix

allocation) for 5000 nodes

Name Memory Allocated (GB) Normalized Memory

Dense matrix 1996.7 1

Nested Dictionary 311.704 0.156

Sparse Matrix 662.199 0.332

Hybrid 665.545 0.333

Stinger 1225.696 0.614
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The Julia Programming Language

• Solves the “two language problem” by o↵ering high

performance in a high productivity language

• Generic Programming with multiple dispatch allows for

swapping data structures

• A mature graph library LightGraphs.jl [1].

• Building on previous work with STINGER.jl [5].

• Easy to use parallel @threads.
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Sparsity Change Analysis

Figure 5: Number of rows changed in the nodal iteration phase

(V=5000). Sparsity changes are stable for iterations of sizes 2500 and

1250 with almost all rows touched every time. As the existing partition

becomes more modular, the sparsity changes due to a nodal move

become smaller. Each series is the initial number of vertices n.
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Community Detection Quality

Table 2: Average Detection Quality

Name Accuracy Pairwise precision Pairwise recall

Dense matrix 0.94 1 0.95

Nested Dictionary 0.93 0.99 0.94

Sparse Matrix 0.96 1 0.97

Sparse Hybrid 0.93 1 0.94

Stinger 0.97 1 0.97

• Detection quality is similar across all data structures

• Variation due to parallel benign races
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Entropy Decrease as a Stopping Criterion

Entropy of nodal iterations for a 1000 node graph.

The nodal phase doesn’t

decrease entropy.

Entropy measured as

description length [2]

Entropy change is not a good proxy for stopping criterion.
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Conclusion

• Our theoretical analysis allows you to choose between data

structures (or hybrids) a priori.

• Entropy analysis fails as a stopping criteria

• Large sparsity churn in this algorithm sets a limit on

performance improvement

• Hard Problem: developing dynamic graph data structures for

large sparsity churn
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Strong Scaling

Figure 6: Strong Scaling: Run time as a function of thread count.

Scaling is better for larger values of n where there is more work to be

done. Also, hyperthreading (16� 64 threads) is not substantially helpful

for this problem.
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