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Introduction
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e Motivated by graph challenge

e Memory representations of graphs are significant for
performance

e Many agglomerative community detection algorithms build a
community graph

e Performance of the community graph data structure
dominates runtime

e How can we study the performance of this inner loop data
structure?

e Conclusions about data structures using the algorithm

e Conclusions about the algorithm using the data structures



How do we choose a IBECM datastructure for this algorithm?

Experimental Performance

Theoretical cost model

Hybrid Data Structure

Sparsity change and entropy decrease set fundamental limits

Dynamic Graph for IBECM
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Figure 2: 4 detected communities

Figure 1: A graph



Piexoto’s Algorithm
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Inter-block Edge Count Matrix Operations

Mi; counts number of edges between a vertices in community / and

vertices in community j and vertices in community

. Insertion: Mj;, 0+ +, adding an edge i — j

. Deletion: Mj;, + + 0, removing an edge / — j

1
2
3. Updates: Mj;, wjj — WIZ updating the weight of the edge
4. Static structures are faster if you can use them

5

. Algorithms that assign vertices to communities only once do
not delete



Graph Formats

Memory access dominates graph algorithm performance. For
typical graph algorithms like BFS, graphs have poor spatial and
temporal locality making them hard to optimize [3].

e Dense Matrix

Sparse Matrix

Hash-map based structures

Dynamic Graphs

Relational Databases



Parallel Implementation

e Locking for correctness is slow
e MCMC allows you to relax strict ordering of operations [2]

e Parallel phases: read phase then write phase.



Performance

Relative Runtime
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Figure 3: Run time of each data structure as a function of graph size n.

The hybrid data structure is faster than the sparse matrix structure after

the crossover point at n ~ 5000
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Algorithm Cost Analysis i

e Piexto algorithm over cost is O(nlog?n) [4].

e For HPC applications we need components of the overall
runtime bound because the different operations take different
amounts of time

e Read operations access M (proposed moves)
e Write operations modify M (accepted moves)
e Proposals per vertex be denoted by N,

e Proposals accepted per vertex be denoted by N,
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Algorithm Cost Analysis ii

Let the cost of a read operation be a and the cost of a write
operation be 3. Cost is measured according to the time or cycles
used per operation. The runtime formula is given by

aN,V + BN,V (1)

e Aggregate operation counts control performance
e Different Data structures show different performance

e QOur code uses Julia and multiple dispatch to allow
hot-swapping implementations
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Sparse Matrix Hybrid

Taking a page from streaming graph algorithms an incremental
linear algebra, IBECM M satisfies:

M = C'AC (2)

Let A represent updates to C, such that Chey, = C + A

Muew = (C+A)YAC+A) (3)
= C'AC+ A'AC + C'AA + ANAA (4)
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Hybrid Data Structure Approach

From read-write analysis of the algorithm, we derived a threshold
on when a hybrid algorithm is an improvement:

2y N,

VN, < ,I:I,Z(BR - Bw) + (aw — ar) (5)

Basically, single point reads must be constant time for optimal

data structure.
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Normalized Run Time
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Figure 4: Run time normalized to nested dictionary performance for
each graph size n. Nested dictionary is faster in most cases. Performance
of sparse hybrid data structure is better than sparse matrix, as predicted.
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Memory Usage

Table 1: Average Memory Allocated (Normalized to dense matrix
allocation) for 5000 nodes

Name Memory Allocated (GB) Normalized Memory
Dense matrix 1996.7 1
Nested Dictionary 311.704 0.156
Sparse Matrix 662.199 0.332
Hybrid 665.545 0.333
Stinger 1225.696 0.614
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The Julia Programming Language
(U
julia

e Solves the “two language problem” by offering high
performance in a high productivity language

Generic Programming with multiple dispatch allows for
swapping data structures

A mature graph library LightGraphs.jl [1].
Building on previous work with STINGER.j| [5].

Easy to use parallel @threads.
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Sparsity Change Analysis

Sparsity pattern change
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Figure 5: Number of rows changed in the nodal iteration phase

(V=5000). Sparsity changes are stable for iterations of sizes 2500 and

1250 with almost all rows touched every time. As the existing partition 18



Community Detection Quality

Table 2: Average Detection Quality

Name Accuracy Pairwise precision Pairwise recall
Dense matrix 0.94 1 0.95
Nested Dictionary 0.93 0.99 0.94
Sparse Matrix 0.96 1 0.97
Sparse Hybrid 0.93 1 0.94
Stinger 0.97 1 0.97

e Detection quality is similar across all data structures

e Variation due to parallel benign races
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Entropy Decrease as a Stopping Criterion

Entropy of nodal iterations for a 1000 node graph.
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Entropy change is not a good proxy for stopping criterion.
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Conclusion

e Qur theoretical analysis allows you to choose between data
structures (or hybrids) a priori.

e Entropy analysis fails as a stopping criteria

e Large sparsity churn in this algorithm sets a limit on
performance improvement

e Hard Problem: developing dynamic graph data structures for
large sparsity churn
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Strong Scaling
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Figure 6: Strong Scaling: Run time as a function of thread count.
Scaling is better for larger values of n where there is more work to be
done. Also, hyperthreading (16 — 64 threads) is not substantially helpful
for this problem.
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